Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Isomorphism and integral unity

  1. Dec 1, 2008 #1


    User Avatar

    Hello, I have a non-homework problem I have been working on for a while. Let F be a set of positive decreasing 1-lipschitz functions of integral unity and G an isomorphic (to F)set of 1-lipschitz functions. F and G are defined on R and Y respectively where y=x-f(x) in Y and g in G is precisely: g(y) =min{x,f(x)} (x in R). Further, define: g(y) = 0 for all x <= -f(0) and f(x) is 0 outside a compact set and for x <0. The question? Show that g is also of integral unity, that is:

    \int_[-f(0), \infty) g(y) dy = \int_[0, \infty) f(x)dx. Thank you for any input-I just realized that the 'standard' change of variable does not apply or at least is not what I need so I am stuck.
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you help with the solution or looking for help too?
Draft saved Draft deleted

Similar Discussions: Isomorphism and integral unity
  1. An integral (Replies: 2)