- #1
- 598
- 0
Homework Statement
[tex]\phi[/tex]:G-->G'
Let [tex]\phi[/tex] be an isomorphism. Prove that [tex]\phi[/tex] maps the e identity of G to e', the identity of G' and for every a[tex]\in[/tex]G, [tex]\phi[/tex]([tex]a^{-1}[/tex])=[tex]^\phi(a){-1}[/tex].
Homework Equations
The Attempt at a Solution
We have an isomorphism, therefore one to one, onto and has a homomorphism.
Phi is one to one therefore [tex]\phi[/tex](x)=[tex]\phi[/tex](y), implying x=y.
Then [tex]\phi[/tex](G)=[tex]\phi[/tex](G') implying e=e'.
Now [tex]\phi[/tex](a*[tex]a^{-1}[/tex])=[tex]\phi[/tex](a)*[tex]\phi[/tex]([tex]a^{-1}[/tex]) is what we want to prove.
Now I get stuck.