Is the following correct, as far as it goes?(adsbygoogle = window.adsbygoogle || []).push({});

Suppose I have a vector spaceVand I'm making a transformation from one coordinate system, "the old system", with coordinatesx^{i}, to another, "the new system", with coordinatesy^{i}. Whereiis an index that runs from 1 to n.

Lete_{i}denote the coordinate basis for the old system, ande'_{i}the coordinate basis for the new system.

I can define matricesB_{L}andB_{R}(where subscript L and R stand for "left" and "right") such that

[tex]B_L \begin{bmatrix} \vdots \\ \textbf{e}_i \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ \textbf{e}'_i \\ \vdots \end{bmatrix}[/tex]

[tex]\begin{bmatrix} \cdots & \textbf{e}_i & \cdots \end{bmatrix} B_R = \begin{bmatrix} \cdots & \textbf{e}'_i & \cdots \end{bmatrix}[/tex]

and likewise matricesC_{L}andC_{R}, replacing the basis vectors in the above definitions with components of vectors in (the underlying set of)V.

And

[tex]C_L = \left ( C_R \right )^T = \begin{bmatrix}

\frac{\partial y^1}{\partial x^1} & \cdots & \frac{\partial y^1}{\partial x^n} \\

\vdots & \ddots & \vdots \\

\frac{\partial y^n}{\partial x^1} & \cdots & \frac{\partial y^n}{\partial x^n}

\end{bmatrix}[/tex]

and

[tex]\left ( C_L \right )^{-1} = B_L = \left ( B_R \right )^T = \begin{bmatrix}

\frac{\partial x^1}{\partial y^1} & \cdots & \frac{\partial x^1}{\partial y^n} \\

\vdots & \ddots & \vdots \\

\frac{\partial x^n}{\partial y^1} & \cdots & \frac{\partial x^n}{\partial y^n}

\end{bmatrix}.[/tex]

And some people (e.g. Wolfram Mathworld, Berkley & Blanchard: Calculus) define the Jacobian matrix of this transformation as

[tex]J \equiv C_L \equiv \frac{\partial \left ( y^1,...,y^n \right )}{\partial \left ( x^1,...,x^n \right )}[/tex]

while others (e.g. Snider & Davis: Vector Analysis) define it as

[tex]J \equiv \left ( C_L \right )^{-1} \equiv \frac{\partial \left ( x^1,...,x^n \right )}{\partial \left ( y^1,...,y^n \right )}.[/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Jacobian matrix

**Physics Forums | Science Articles, Homework Help, Discussion**