Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Jordan Chains to solve x'=Ax, complex-valued.

  1. Feb 8, 2016 #1
    This isn't a homework help question, I am asking about a general case as the text hasn't fleshed out it's explanation enough for me.

    7uCEB0R.png

    So, I've just seen how Jordan Chains can be applied to solve some applied problems involving solving x'=Ax.

    My question is about what they specifically mean in this copy-pasted paragraph above.

    Would they mean that, I should find a Jordan Chain of length k for lambda = alpha and then another Jordan Chain of length k for lambda = beta? And if so, what would the general form of the solution look like?

    Take a three by three case with complex eigenvalue of defect 2. Would the general solution look like:

    [tex]\lambda = \alpha, \left \{ \vec{u_1},\vec{u_2},\vec{u_3} \right \}[/tex]
    [tex]\lambda = \beta, \left \{ \vec{v_1},\vec{v_2},\vec{v_3} \right \}[/tex]
    [tex]
    \vec{x_1} = \vec{u_1}e^{\alpha t} \\

    \vec{x_2} = (t\vec{u_1} + \vec{u_2})e^{\alpha t} \\

    \vec{x_3} = \left(\frac{1}{2}t^2\vec{u_1} + t\vec{u_2}+\vec{u_3}\right)e^{\alpha t} \\ \\

    \vec{x_4} = \vec{v_1}(\cos{\beta t} + \sin{\beta t}) \\

    \vec{x_5} = (t\vec{v_1} + \vec{v_2})(\cos{\beta t} + \sin{\beta t}) \\

    \vec{x_6} = \left(\frac{1}{2}t^2\vec{v_1} + t\vec{v_2}+\vec{v_3}\right)(\cos{\beta t} + \sin{\beta t})
    [/tex]

    Or

    [tex]
    \vec{x_1} = \vec{u_1}e^{\alpha t}(\cos{\beta t} + \sin{\beta t}) \\

    \vec{x_2} = (t\vec{u_1} + \vec{u_2})e^{\alpha t}(\cos{\beta t} + \sin{\beta t}) \\

    \vec{x_3} = \left(\frac{1}{2}t^2\vec{u_1} + t\vec{u_2}+\vec{u_3}\right)e^{\alpha t}(\cos{\beta t} + \sin{\beta t}) \\ \\

    \vec{x_4} = \vec{v_1}e^{\alpha t}(\cos{\beta t} + \sin{\beta t}) \\

    \vec{x_5} = (t\vec{v_1} + \vec{v_2})e^{\alpha t}(\cos{\beta t} + \sin{\beta t}) \\

    \vec{x_6} = \left(\frac{1}{2}t^2\vec{v_1} + t\vec{v_2}+\vec{v_3}\right)e^{\alpha t}(\cos{\beta t} + \sin{\beta t})
    [/tex]

    or something else?
     
  2. jcsd
  3. Feb 13, 2016 #2
    Thanks for the post! This is an automated courtesy bump. Sorry you aren't generating responses at the moment. Do you have any further information, come to any new conclusions or is it possible to reword the post?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Jordan Chains to solve x'=Ax, complex-valued.
  1. X-tanh ax = 0 (Replies: 16)

Loading...