- #1
- 13
- 1
I'm reading Lambourne's <Relativity, Gravitation and Cosmology>, and I cannot get a result the book describes. It's on equation (6.7) in 173p.
When a person free-falls into a non-rotating black hole from ##r=r_0## to some position ##r=r'##, the proper time becomes
$$τ(r')-τ(r_0)=\frac{r_0}{c}\sqrt{\frac{r_0}{r_S}}[\frac{π}{2}+\sqrt{\frac{r'}{r_0}(1-\frac{r'}{r_0})}+\arctan(-\sqrt{\frac{r'}{r_0-r'}})].$$
Now we can simplify the above by taking the limits of ##r_0>>r'##.
First, using ##\arctan{x}=x+O(x^3)##,
$$\arctan(-\sqrt{\frac{r'}{r_0-r'}})=-\sqrt{\frac{r'}{r_0-r'}}+O[(-\sqrt{\frac{r'}{r_0-r'}})^3],$$
and here, for
$$\sqrt{\frac{r'}{r_0-r'}}=\sqrt{\frac{\frac{r'}{r_0}}{1-\frac{r'}{r_0}}} << 1,$$
we can ignore ##O(x^3)##. Then
$$\sqrt{\frac{r'}{r_0}(1-\frac{r'}{r_0})}+\arctan(-\sqrt{\frac{r'}{r_0-r'}})$$ $$≈\frac{r_0}{c}\sqrt{\frac{r_0}{r_S}}[\frac{π}{2}+\sqrt{\frac{r'}{r_0}}(1-\frac{r'}{r_0})^{\frac{1}{2}}-\sqrt{\frac{r'}{r_0}}(1-\frac{r'}{r_0})^{-\frac{1}{2}}].$$
By using
$$(1-\frac{r'}{r_0})^{\frac{1}{2}}≈1-\frac{r'}{r_0}$$ $$(1-\frac{r'}{r_0})^{-\frac{1}{2}}≈1+\frac{r'}{r_0},$$
I get
$$τ(r')-τ(r_0)=\frac{r_0}{c}\sqrt{\frac{r_0}{r_S}}[\frac{π}{2}-(\frac{r'}{r_0})^{\frac{3}{2}}].$$
This is my result, but the book says
$$τ(r')-τ(r_0)=\frac{r_0}{c}\sqrt{\frac{r_0}{r_S}}[\frac{π}{2}-\frac{2}{3}(\frac{r'}{r_0})^{\frac{3}{2}}].$$
Where did the factor ##\frac{2}{3}## come from?
When a person free-falls into a non-rotating black hole from ##r=r_0## to some position ##r=r'##, the proper time becomes
$$τ(r')-τ(r_0)=\frac{r_0}{c}\sqrt{\frac{r_0}{r_S}}[\frac{π}{2}+\sqrt{\frac{r'}{r_0}(1-\frac{r'}{r_0})}+\arctan(-\sqrt{\frac{r'}{r_0-r'}})].$$
Now we can simplify the above by taking the limits of ##r_0>>r'##.
First, using ##\arctan{x}=x+O(x^3)##,
$$\arctan(-\sqrt{\frac{r'}{r_0-r'}})=-\sqrt{\frac{r'}{r_0-r'}}+O[(-\sqrt{\frac{r'}{r_0-r'}})^3],$$
and here, for
$$\sqrt{\frac{r'}{r_0-r'}}=\sqrt{\frac{\frac{r'}{r_0}}{1-\frac{r'}{r_0}}} << 1,$$
we can ignore ##O(x^3)##. Then
$$\sqrt{\frac{r'}{r_0}(1-\frac{r'}{r_0})}+\arctan(-\sqrt{\frac{r'}{r_0-r'}})$$ $$≈\frac{r_0}{c}\sqrt{\frac{r_0}{r_S}}[\frac{π}{2}+\sqrt{\frac{r'}{r_0}}(1-\frac{r'}{r_0})^{\frac{1}{2}}-\sqrt{\frac{r'}{r_0}}(1-\frac{r'}{r_0})^{-\frac{1}{2}}].$$
By using
$$(1-\frac{r'}{r_0})^{\frac{1}{2}}≈1-\frac{r'}{r_0}$$ $$(1-\frac{r'}{r_0})^{-\frac{1}{2}}≈1+\frac{r'}{r_0},$$
I get
$$τ(r')-τ(r_0)=\frac{r_0}{c}\sqrt{\frac{r_0}{r_S}}[\frac{π}{2}-(\frac{r'}{r_0})^{\frac{3}{2}}].$$
This is my result, but the book says
$$τ(r')-τ(r_0)=\frac{r_0}{c}\sqrt{\frac{r_0}{r_S}}[\frac{π}{2}-\frac{2}{3}(\frac{r'}{r_0})^{\frac{3}{2}}].$$
Where did the factor ##\frac{2}{3}## come from?