# Jumping Problem

Surprisingly, very few humans can jump more than 2 feet (0.6 m) straight up. Solve for the time one spends moving upward in a 2-foot vertical jump. Then double it for the "hang time" - the time one's feet are off the ground.
b) Calculate the vertical height of Michael Jordan's jump when he attains a hang time of a full 1 s.

a)
t=sqrt(2d/g) =sqrt(2(0.6 m))/9.8 =0.35 s

Hangtime=0.35 s x 2= 0.70 s

b)
d=(1/2)gt2=(1/2)(9.8 m/s2)(1.0 s)2= 4.9 m

Is this correct?

PhanthomJay
Homework Helper
Gold Member
Surprisingly, very few humans can jump more than 2 feet (0.6 m) straight up. Solve for the time one spends moving upward in a 2-foot vertical jump. Then double it for the "hang time" - the time one's feet are off the ground.
b) Calculate the vertical height of Michael Jordan's jump when he attains a hang time of a full 1 s.

a)
t=sqrt(2d/g) =sqrt(2(0.6 m))/9.8 =0.35 s

Hangtime=0.35 s x 2= 0.70 s

b)
d=(1/2)gt2=(1/2)(9.8 m/s2)(1.0 s)2= 4.9 m

Is this correct?
you forgot to divide the hang time by 2 in part b. part a is a ok.

Last edited: