I have two basic questions about the full propagator (2-point function) in QFT. Am I correct that for a scalar field, it is(adsbygoogle = window.adsbygoogle || []).push({});

[tex] \frac{iZ}{p^{2}-m^{2}+i \epsilon} + \int_{m^{2}}^{\infty} dX \frac{\rho[X]}{p^{2}-X+i \epsilon} ?[/tex]

(1) Is this form of the propagator a feature of _quantum_ field theory? What if we have a nonlinear classical field theory? Would there still be something like that? Maybe Z = 1 (I'm not even sure about this) but perhaps we'd still have the term involving the integral?

(2) In QFT we seem to compute Z iteratively -- we compute 2-point function iteratively, up to a given number of loops -- and then we introduce Z's and mu's (if we're doing dimensional regularization). What about the term involving the integral? I don't recall it ever coming up except when the Källen-Lehmann rep is mentioned. Also, what about bound states; where does it come in?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Källen-Lehmann Representation

Can you offer guidance or do you also need help?

**Physics Forums | Science Articles, Homework Help, Discussion**