Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

A KamLAND-Zen results

  1. May 13, 2016 #1

    Orodruin

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Gold Member

    I would like to draw some attention to the KamLAND-Zen collaboration, which recently made their latest results public on the arXiv:
    The limits they put on the effective electron neutrino mass improve by almost an order of magnitude (the upper bound is in the range 60-161 meV, depending on the nuclear matrix element used) upon the previous best ones and we are now facing a situation where almost the entire quasi-degenerate region is ruled out and another order of magnitude or so would probe the inverted hierarchy (IH).

    One thing worth remembering is that a signal in 0νββ would require neutrinos to be Majorana fermions and a negative result even after probing the IH and seeing IH in other experiments could be due to either neutrinos being Dirac fermions or new physics.

    it is also worth noting that this result is a stronger bound than what was expected based on the KamLAND-Zen sensitivity, likely due to favourable statistical fluctuations. It will be quite some time before any other experiment can compete with this.
     
  2. jcsd
  3. May 14, 2016 #2

    Garlic

    User Avatar
    Gold Member

    So finally there are more results on 0vββ experiments, I am really interested.
    Could someone explain roughly what quasi-degenerate neutrino mass is?
    And why does the experiment use Xe-136, but not another double beta decaying isotope with less half life?
    Thank you
     
  4. May 14, 2016 #3

    Orodruin

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Gold Member

    From oscillation experiments, we currently have knowledge on the differences of the mass squares of the neutrino mass eigenstates ##\Delta m_{ij}^2 = m_i^2 - m_j^2##. The sign of ##\Delta m_{31}^2## is currently unknown and if it is positive it is referred to as normal ordering and otherwise as inverted ordering. However, oscillation experiments give us no insight to the absolute mass scale of the neutrinos, i.e., the lightest neutrino could still be massless. If it is massless or has a very small mass, the neutrino masses are hierarchical, i.e., their ratios are large. However, if the lightest neutrino mass ##m_0## is such that ##m_0^2 \gg |\Delta m_{31}|^2##, all neutrino masses will be of similar size. This would also mean that it would be very difficult to tell the ordering apart in neutrinoless double beta decay experiments as the effective mass measured in these experiments would be very similar.

    You can see this in one of the figures of the KamLAND-Zen paper:
    fig3.png
    The quasi-degenerate regime starts when the lightest neutrino mass is around 0.1 eV.

    As for the choice of nucleus, there are many factors other than half-life to consider, e.g., the Q-values and the uncertainties in the nuclear matrix element to mention a few. I am not an expert in the experimental implementation, someone else might be able to be more precise.
     
  5. May 14, 2016 #4
    I think I never saw this plot with the grey bands in it (not too surprising as I am not too much into that field). From the paper I take these are predictions based on neutrino oscillation measurements, and they seem to be excluded by the measurement. How is this currently interpreted? It seems to indicate that neutrino oscillation data disfavour neutrinos being majorana particles?
     
  6. May 14, 2016 #5

    Orodruin

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Gold Member

    The grey bands are the upper limits from other 0νββ searches. The reason they are bands and not lines is mainly due to uncertainties in the nuclear matrix elements (NMEs) of the decaying isotopes.

    Oscillation experiments are not sensitive to the Dirac/Majorana nature of neutrinos. The only difference in the oscillation formalism is the appearance of two Majorana phases in the lepton mixing matrix, neither of which affects the oscillation probabilities. The red and green bands show the allowed range of the plotted parameters based on oscillation experiments. Like the grey bands, the blue KamLAND-Zen band is the range of upper limits which are put on the effective neutrino mass depending on the NME.
     
  7. May 14, 2016 #6
    Ah, I think I misinterpreted what they mean by "dark shaded" in the caption. That way it makes much more sense, thanks for clarifying:)
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: KamLAND-Zen results
  1. First results from LHC (Replies: 3)

  2. Recent CDF results (Replies: 46)

  3. CERN Zen Events - 1985 (Replies: 0)

Loading...