# Keplers 3rd Law

A satellite has a mass of 6000 kg and is in a circular orbit 4.40 10^5 m above the surface of a planet. The period of the orbit is two hours. The radius of the planet is 4.10 10^6 m. What is the true weight of the satellite when it is at rest on the planet's surface?

m=6000kg
t=7200 s

Mp = 4(3.14)^2 (4.40 * 10^5 + 4.10 * 10^ 6)^3/(6.67*10^-11)(7200)^2
Mp = 1.06 * 10^24
then using Mp for Wp (weight of planet)

Wp= (6.67*10^-11)(1.06 * 10^24)(6000) / (4.40 * 10^5)^2
* I used Keplers 3rd law to get the Mass of planet and then applied it to Weight of planet from which I got 2.191 x 10^6 and it still marks it wrong

Related Introductory Physics Homework Help News on Phys.org
You put in the height of the satellite instead of the radius of the planet.

ohhhhhh

so its (6.67*10^-11)(1.06*10^24)(6000) / (4.10*10^6)^2
which is = 2.523569 * 10^4 which is same as 25235.69 ........ can you please just confirm it for me? I have only 1 chance left, and I dnt want to lose points. Thanks

Seems good to me.

thanx