# Kinematic Problem Involving MJ

In this problem, it states that Michael Jordan is able to jump and remain in the air for two full seconds from launch to landing. Use that information to calculate the maximun height that such jump would attain. It also says that MJ's jaximum jump height has been estimated at about one meter.

So, the components that were given are:

t = 2.0s
g = 10 m/s² (rounded from 9.8 for simplicity sake)
and we have to calculate y (height)

Since it takes 2 seconds to go up and down, we can assume that the time it takes for MJ to get to the peak of the jump will be 1.0s, therefore we will use:

When i tried solving for this problem, i used the formula:

V_f = V_0 + gt --> V_f - gt = V_0 ,

to solve for initial velocity at takeoff, and i got [ V_0 = 2.2 m/s ]

With that, I followed up with the formula:

a) y = (V_0)(t) + ½gt²

and got the answer of: y = -3.8m , which is obviously wrong. So i tried:

b) y = ½(V_0 + V_f)t

and got the answer: y = 1.1m

My questions are:

1) Why do both formulas give different answers when you are using the same set of data to solve for a problem?

2) Why is formula b correct instead of a when gravity plays a role in this yet it was not part of the formula b?

Related Introductory Physics Homework Help News on Phys.org
Doc Al
Mentor
Dooh said:
When i tried solving for this problem, i used the formula:

V_f = V_0 + gt --> V_f - gt = V_0 ,

to solve for initial velocity at takeoff, and i got [ V_0 = 2.2 m/s ]