Solving a V-vs-s Problem: John's Quandry

  • Thread starter John Mohr
  • Start date
In summary, John's error was in writing the work-energy theorem incorrectly. He has written the equation incorrectly, and the wrong side will only be equal to the change in kinetic energy if v_i=0 or v_f=v_i.
  • #1
John Mohr
23
10
Homework Statement
A 2500 kg car changes from a velocity of 15 m/s to 25 m/s over a distance of 450 m. What is the work done on the car by the engine?
Relevant Equations
W = Fd, Delta E = 1/2mdeltav^2
W = delta E
Hello,
For some reason I'm not seeing something in working out a question two ways. The question I'm working through reads:

"A 2500 kg car changes from a velocity of 15 m/s to 25 m/s over a distance of 450 m. What is the work done on the car by the engine?"

I've attached my quandry. I've surmised that the work-energy theorm can be used. Furthermore, that on the work side, I could use kinematics and on the energy side, find the change in kinetic energy. But I don't come up with the same answer on each side? This is mostly because of the difference between (vf^2-vi^2) and (vf-vi)^2. I've attached some handwritten work.

Does anyone see my error?

John
 

Attachments

  • Kinematics vs Energy.pdf
    120.3 KB · Views: 66
Physics news on Phys.org
  • #2
In your handwritten work, you did not calculate the change in kinetic energy correctly.
## KE_f - KE_i \neq \frac 1 2 m (\Delta v)^2##.
 
  • Like
Likes John Mohr
  • #3
Very good! For some reason, I've used 1/2m(deltav)^2 in the past. This is my mistake.
Is there any use for this expression or is this completely wrong and never used?
 
  • #4
John Mohr said:
Homework Statement:: A 2500 kg car changes from a velocity of 15 m/s to 25 m/s over a distance of 450 m. What is the work done on the car by the engine?
Relevant Equations:: W = Fd, Delta E = 1/2mdeltav^2
W = delta E

Hello,
For some reason I'm not seeing something in working out a question two ways. The question I'm working through reads:

"A 2500 kg car changes from a velocity of 15 m/s to 25 m/s over a distance of 450 m. What is the work done on the car by the engine?"

I've attached my quandry. I've surmised that the work-energy theorm can be used. Furthermore, that on the work side, I could use kinematics and on the energy side, find the change in kinetic energy. But I don't come up with the same answer on each side? This is mostly because of the difference between (vf^2-vi^2) and (vf-vi)^2. I've attached some handwritten work.

Does anyone see my error?

John
Your error is that you wrote the work-energy theorem incorrectly. You have
Screen Shot 2023-01-25 at 9.49.41 PM.png


The right hand side should be the change in kinetic energy ##\Delta K= \frac{1}{2}mv_f^2-\frac{1}{2}mv_i^2##, i.e. subtract the initial KE from the final KE.
 
  • Like
Likes John Mohr
  • #5
John Mohr said:
Very good! For some reason, I've used 1/2m(deltav)^2 in the past. This is my mistake.
Is there any use for this expression or is this completely wrong and never used?
I don't know of any use for the expression ##\frac 1 2 m (\Delta v)^2##. I recommend that you trash it.:smile:
 
  • Like
Likes malawi_glenn and John Mohr
  • #6
TSny said:
I don't know of any use for the expression ##\frac 1 2 m (\Delta v)^2##.
Thank you so much for your help!
 
  • Like
Likes TSny
  • #7
@TSny @kuruman
This is crazy to realize for me. I've been teaching it this way for years and many other teachers I know teach it this way too. This video segment is a prime example. It's amazing how these things make their way into our misunderstandings.
Thanks again.
John
 
  • Wow
  • Like
Likes hutchphd, PeroK and TSny
  • #8
John Mohr said:
@TSny @kuruman
This is crazy to realize for me. I've been teaching it this way for years and many other teachers I know teach it this way too. This video segment is a prime example. It's amazing how these things make their way into our misunderstandings.
Thanks again.
John
Yes, the video is incorrect in the way it solved for ##\Delta v##. The final answer for ##v_f## happened to come out right because ##v_i = 0## in the example.

##\Delta (v^2)## will equal ##(\Delta v)^2## only if ##v_i = 0## or if ##v_f = v_i## (trivial).

Note that ##\frac 1 2 m (\Delta v)^2## is always nonnegative. But we know we can have situations where the KE decreases; that is, ##\Delta KE## is negative.
 
  • Informative
Likes John Mohr
  • #9
John Mohr said:
@TSny @kuruman
This is crazy to realize for me. I've been teaching it this way for years and many other teachers I know teach it this way too. This video segment is a prime example. It's amazing how these things make their way into our misunderstandings.
Thanks again.
John
I cannot make that link work. Just stuck on some ad that won't play.
Seems to me you confused ##\Delta(v^2)## with ##(\Delta(v))^2##.
 
  • Like
Likes Lnewqban and John Mohr
  • #10
John Mohr said:
@TSny @kuruman
I've been teaching it this way for years and many other teachers I know teach it this way too.
This is scary, if true. What kind of teachers? Grade school teachers?
 
  • Like
Likes malawi_glenn
  • #11
John Mohr said:
@TSny @kuruman
This is crazy to realize for me. I've been teaching it this way for years and many other teachers I know teach it this way too. This video segment is a prime example. It's amazing how these things make their way into our misunderstandings.
Thanks again.
John
On the segment you supply the instructor explicitly emphasizes that the form he wrote is good only for v(initial)=0. You should indeed be concerned.
 
  • #12
haruspex said:
I cannot make that link work. Just stuck on some ad that won't play.
Seems to me you confused ##\Delta(v^2)## with ##(\Delta(v))^2##.
I got a "Skip Ad" 5 s count down timer on the video lower right.
haruspex said:
Seems to me you confused ##\Delta(v^2)## with ##(\Delta(v))^2##.
I find the interpretation of the term ##\Delta (v^2)## ambiguous. It is obvious from the context how you mean it here but, when doing error analysis, one also writes ##\Delta (v^2)=2v\Delta v##. That could be confusing to beginners who have not yet mastered the subtleties of when one uses just a "##-##" sign, a "##\Delta##", a "##\delta##" or a "##d##" to denote a difference between two quantities.
 

1. What is a V-vs-s problem?

A V-vs-s problem is a type of mathematical problem that involves finding the relationship between two variables, V and s, and determining how changes in one variable affect the other.

2. Who is John and what is his quandary?

John is a hypothetical person used in this problem as an example. His quandary is the V-vs-s problem that he is trying to solve.

3. How do you solve a V-vs-s problem?

To solve a V-vs-s problem, you need to first identify the two variables, V and s, and the given information about them. Then, you can use mathematical equations and principles to determine the relationship between the variables and solve for the unknown variable.

4. What are some common strategies for solving V-vs-s problems?

Some common strategies for solving V-vs-s problems include creating a table of values, using a graph to visualize the relationship between the variables, and setting up and solving equations based on the given information.

5. How can solving V-vs-s problems be useful in real life?

Solving V-vs-s problems can be useful in many real-life situations, such as calculating the speed of an object, determining the relationship between two quantities, or predicting the outcome of a situation based on changing variables. It can also help develop critical thinking and problem-solving skills.

Similar threads

  • Introductory Physics Homework Help
Replies
17
Views
402
  • Introductory Physics Homework Help
Replies
15
Views
1K
  • Introductory Physics Homework Help
Replies
6
Views
2K
  • Introductory Physics Homework Help
Replies
3
Views
1K
  • Introductory Physics Homework Help
Replies
9
Views
1K
  • Introductory Physics Homework Help
Replies
5
Views
997
  • Introductory Physics Homework Help
Replies
8
Views
3K
  • Introductory Physics Homework Help
Replies
2
Views
916
  • Introductory Physics Homework Help
Replies
14
Views
2K
  • Introductory Physics Homework Help
Replies
4
Views
961
Back
Top