L=sup{f''(0)|f in the set }

  • Thread starter niklas
  • Start date
  • Tags
    Set
  • #1
4
0
Let [tex]D\subset\mathbb{C}[/tex] be the unitdisc and [tex]F=\{f:D\rightarrow D\,|\,\forall z\in D\partial_{\bar{z}}f=0\}[/tex], calculate [tex]L=\sup_{f\in F}|f''(0)|[/tex]. Show that there is an [tex]g\in F[/tex] with [tex]g''(0)=L[/tex].
I am a bit stuck. But I think that it might be an idea to start with Cauchy estimate. Any other ideas?
 
Last edited:
Physics news on Phys.org
  • #2
[tex]
|a_n|\leq\frac{1}{2\pi}\frac{M}{r^3}l=\frac{M}{r^2}\quad M=\max_{|z|<r<1}|f(z)|=\sup_{z\in\partial D_r}|f(z)|
[/tex]
?
 
Last edited:
  • #3
=1??
 

Suggested for: L=sup{f''(0)|f in the set }

Replies
3
Views
1K
Replies
1
Views
629
Replies
2
Views
866
Replies
15
Views
1K
Replies
6
Views
927
Replies
2
Views
689
Replies
4
Views
858
Back
Top