You make them all equal to 0 so
df/dx=12.25x+5y-42=0
df/dy=5x+2y-28=0
df/dlangrange=6x+5y-37=0
Is this right? then you find a common factor between the first two equations in order to solve for x and y? how do you find lagrange?
I typed out the word lagrange because i do not have the backward L function on my keyboard. It means -backward l . I know how to get the derivative now . I just don't know how to solve for x, y and lagrange(backward l)
You should definitely learn to use tex, but you can just use "L" for lambda and leave out "backward". That looks fine to me. So now you can take the partial derivatives, but this time use "L" and not "lagrange" since that is hard to understand.
Ya so the derivative are:
dL/dx= 12.25x-42+5y-L
dL/dy= 5x-28+2y-L
dL/dL=-(6x+5y-37)
You then set them to 0 so they are
dL/dx= 12.25x-42+5y-L=0
dL/dy= 5x-28+2y-L=0
dL/dL=-(6x+5y-37)=0
Then, could you times the 2nd equation there which is dL/dy by 2 to give you common y terms of 10y?
ok when i solve x, y and lagrange they want me to find this
Use the second order condition to determine if the optimal point is maximum
or minimum.
that means i take the second derivative and how do i determine if it is a max or min?