- #1
- 16
- 0
Find the points at which the function f(x,y,z)=x^8+y^8+z^8 achieves its minimum on the surface x^4+y^4+z^4=4.
I know
8x^7=(lamda)4x^3
8y^7=(lamda)4y^3
8z^7=(lamda)4z^3
x^4+y^4+z^4=4
Case1: x not equal to 0, y not equal to 0, and z not equal to 0
I get 3(4th root of 4/3 to the eigth)?
I'm I doing this right?
I know
8x^7=(lamda)4x^3
8y^7=(lamda)4y^3
8z^7=(lamda)4z^3
x^4+y^4+z^4=4
Case1: x not equal to 0, y not equal to 0, and z not equal to 0
I get 3(4th root of 4/3 to the eigth)?
I'm I doing this right?