1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Lagrangian problem

  1. Mar 25, 2006 #1
    Hi,there! Here is the lagrangian for a charged scalar field http://www.photodump.com/direct/Bbking22/P-meson-Lagrangian.jpg as it can be found in “the large scale structure of space-time” Hawking, Ellis on page 68. It seem’s that I have problem varying Aa on the lagrangian because I get http://www.photodump.com/direct/Bbking22/P-meson-Myresult.jpg , while the result of the book is http://www.photodump.com/direct/Bbking22/P-meson-AmVar.jpg . Does anyone have the same problem? Does anyone gets the book’s result? Thanks for the help. Here are all the results for this example http://www.photodump.com/direct/Bbking22/Example3.jpg .
     
  2. jcsd
  3. Mar 25, 2006 #2

    George Jones

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    I seem to get the same result as you. Below are my calculations, which I have done in flat so that I could use familiar notation. I haven't checked my calculations very closely, so I could easily have made a mistake.

    Have you looked in a quantum field theory book? Almost all books should include a flat space version of this. I don't have any physics books with me right now, so I can't check.

    Regards,
    George

    [tex]
    L=-\frac{1}{2}\left( \partial_{a}\psi+ieA_{a}\psi\right) g^{ab}\left(
    \partial_{b}\overline{\psi}-ieA_{b}\overline{\psi}\right) -\frac{1}{2}
    \frac{m^{2}}{\hbar^{2}}\psi\overline{\psi}-\frac{1}{16\pi}F_{ab}F_{cd}
    g^{ac}g^{bd}
    [/tex]

    [tex]
    \begin{align*}
    \frac{\partial L}{\partial A_{f}} & =-\frac{1}{2}ie\delta_{a}^{f}\psi
    g^{ab}\left( \partial_{b}\overline{\psi}-ieA_{b}\overline{\psi}\right)
    +\frac{1}{2}\left( \partial_{a}\psi+ieA_{a}\psi\right) g^{ab}ie\delta
    _{b}^{f}\overline{\psi}\\
    & =-\frac{1}{2}ie\psi g^{fb}\left( \partial_{b}\overline{\psi}-ieA_{b}
    \overline{\psi}\right) +\frac{1}{2}\left( \partial_{a}\psi+ieA_{a}
    \psi\right) g^{af}ie\overline{\psi}
    \end{align*}
    [/tex]

    [tex]
    \begin{align*}
    \frac{\partial L}{\partial\left( \partial_{n}A_{f}\right) } & =-\frac
    {1}{16\pi}\left[ \frac{\partial F_{ab}}{\partial\left( \partial_{n}
    A_{f}\right) }F_{cd}+F_{ab}\frac{\partial F_{cd}}{\partial\left(
    \partial_{n}A_{f}\right) }\right] g^{ac}g^{bd}\\
    & =-\frac{1}{16\pi}\left[ \frac{\partial}{\partial\left( \partial_{n}
    A_{f}\right) }\left( \partial_{a}A_{b}-\partial_{b}A_{a}\right)
    F_{cd}+F_{ab}\frac{\partial}{\partial\left( \partial_{n}A_{f}\right)
    }\left( \partial_{c}A_{d}-\partial_{d}A_{c}\right) \right] g^{ac}g^{bd}\\
    & =-\frac{1}{16\pi}\left[ \left( \delta_{a}^{n}\delta_{b}^{f}-\delta_{b}
    ^{n}\delta_{a}^{f}\right) F_{cd}+F_{ab}\left( \delta_{c}^{n}\delta_{d}
    ^{f}-\delta_{d}^{n}\delta_{c}^{f}\right) \right] g^{ac}g^{bd}\\
    & =-\frac{1}{16\pi}\left[ \left( g^{nc}g^{fd}-g^{fc}g^{nd}\right)
    F_{cd}+F_{ab}\left( g^{an}g^{bf}-g^{af}g^{bn}\right) \right] \\
    & =-\frac{1}{16\pi}\left[ F^{nf}-F^{fn}+F^{nf}-F^{fn}\right] \\
    & =-\frac{1}{4\pi}F^{nf}
    \end{align*}
    [/tex]

    [tex]
    \begin{align*}
    0 & =\frac{\partial L}{\partial A_{f}}-\partial_{n}\frac{\partial L}{\partial\left(
    \partial_{n}A_{f}\right) }\\
    & =-\frac{1}{2}ie\psi\left( \partial^{f}\overline{\psi}-ieA^{f}\overline
    {\psi}\right) +\frac{1}{2}\left( \partial^{f}\psi+ieA^{f}\psi\right)
    ie\overline{\psi}+\frac{1}{4\pi}\partial_{n}F^{nf}
    \end{align*}
    [/tex]
     
  4. Mar 26, 2006 #3
    Thank you very much George!!
     
  5. Mar 27, 2006 #4

    dextercioby

    User Avatar
    Science Advisor
    Homework Helper

    There's no 1/2 in the lagrangian in the first place. For SED in flat spacetime one has the action

    [tex] S^{SED}\left[A_{\mu},\phi,\phi^{*}\right]= \int \ d^{4}x \ \left[\left(D^{\mu}\phi\right)\left(D_{\mu}\phi\right)^{*} -\frac{1}{4} F^{\mu\nu}F_{\mu\nu}-\mu^{2}\phi\phi^{*}\right] [/tex]

    Daniel.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Lagrangian problem
  1. Lagrangian problem (Replies: 0)

  2. Lagrangian Problem (Replies: 1)

  3. Lagrangian problem (Replies: 3)

  4. Lagrangian problem (Replies: 1)

  5. Problem on Lagrangian (Replies: 5)

Loading...