If we have the next Lambert series:(adsbygoogle = window.adsbygoogle || []).push({});

[tex] S(x)= \sum_{n=0}^{\infty} \frac{ a(n) x^n }{1-x^n } [/tex]

my question is..if you know what S(x) is then..could you obtain the value of the a(n) ?..or simply working with the Dirichlet series version:

[tex] \sum_{n=0}^{\infty}a(n)n^{-s}= \zeta (s) \sum _{n=0}^{\infty}b(n)n^{-s} [/tex]

Where [tex] S(x)= \sum_{n=0}^{\infty} \frac{ a(n) x^n }{1-x^n }=\sum_{n=0}^{\infty} \frac{ b(n) x^n } [/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Lambert series

**Physics Forums | Science Articles, Homework Help, Discussion**