- #1

- 235

- 0

## Main Question or Discussion Point

hi

i thought that if i try to derive the energy of an electron in a magnetic field, this could be done with the assumptions of the bohr model.

L=n h/(2π)

mv²/r=qvB => mvr=qBr²=>n h/(2π)=qBr²

E=p²/(2m)=q²B²r²/(2m)=n h/(2π)qB/(2m)

so i get the energy for the first level, but all transitions are wrong, as n=2,4,6 etc. should be forbidden, but i do not get this condition.

so my question is: why does this mistake appear?

i thought that if i try to derive the energy of an electron in a magnetic field, this could be done with the assumptions of the bohr model.

L=n h/(2π)

mv²/r=qvB => mvr=qBr²=>n h/(2π)=qBr²

E=p²/(2m)=q²B²r²/(2m)=n h/(2π)qB/(2m)

so i get the energy for the first level, but all transitions are wrong, as n=2,4,6 etc. should be forbidden, but i do not get this condition.

so my question is: why does this mistake appear?