(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

using the definition (not the table), find the Laplace transform of f(t)=t

2. Relevant equations

definition of Laplace... the integral from 0 to infinity of [(e^-st)*f(t)]dt

3. The attempt at a solution

first I took the integral of [(e^-st)t]dt by parts and got (e^-st)(t^2)/2. I'm reasonably sure this is right cause I checked it with my TI89 :) then to evaluate it from 0 to infinity, you should be able to substitute b for infinity and take the limit as b approaches infinity. So I get the limit as b approaches infinity of (e^-sb)(b^2)/2 - (e^0)(0)/2. That second part obviously goes to 0, so we can ignore it. The first part goes to 0*infinity over 2 which isn't very helpful. However, if we move the e^-sb to the denominator, then we have the indeterminate form infinity/infinity and can utilize lohpital's (however you spell that) rule. Taking the derivative of the top and bottom yields 2b/(2se^(sb)) which is still indeterminate. Taking the derivative again gives 2/(2(s^2)*e^(sb)). This goes to zero (infinity in the denominator). However, I happen to know from my handy table of Laplace transforms that the answer I'm looking for is 1/s^2. where did I go wrong?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Laplace by definition

**Physics Forums | Science Articles, Homework Help, Discussion**