# Laplace equation

#### Aamodt

Hi, I'm trying to solve the Laplace equatio in oblate and prolate spheroidal coordinates, but it's proving to be too much for me to handle, can anyone help me out?
You can see the equations I'm using in:
http://mathematica.no.sapo.pt/index.html

Last edited:
Related Differential Equations News on Phys.org

#### dextercioby

Science Advisor
Homework Helper
I "Cannot find server". Can you attach a written document with your work...?

Daniel.

#### Aamodt

I have corrected the problem, you can now access the web page with the equations, thanks for the warning.

#### lurflurf

Homework Helper
Aamodt said:
Hi, I'm trying to solve the Laplace equatio in oblate and prolate spheroidal coordinates, but it's proving to be too much for me to handle, can anyone help me out?
You can see the equations I'm using in:
http://mathematica.no.sapo.pt/index.html
Laplaces equation for what (scalar, vector, tensor rank-2?). Using what method (numerical solution, separation of variable, integral transforms?).
I would guess that you intend to solve the scalar laplace equation using seperation of variables. So you presume the solution can be written in the form of a sum of terms that are products of functions of one variable. Then the partial differential equation implies that the functions of one variable satisfy some strum louiville problem.
Mathworld says your two systems are among the 13 where laplaces equation can be solved by separation of variables and that solutions involve Legendre polynomials and circular functions. In any case you are looking at some messy algebra and calculus.

http://mathworld.wolfram.com/LaplacesEquation.html

### Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving