• Support PF! Buy your school textbooks, materials and every day products Here!

Laplace tranforms

  • #1
EXPLAIN LAPLACE TRANSFORM OF UNIT STEP FUNTION???

i.e L{u(t)} = 1/s
 

Answers and Replies

  • #2
Cyosis
Homework Helper
1,495
0
The unit step function is defined as::

[tex]
u(t)=\begin{cases} 0, & t < 0 \\ 1, & t \ge 0 \end{cases}
[/tex]

Now take the Laplace transform.

[tex]
L[u(t)]=\int_0^\infty u(t) e^{-st} dt=\int_0^\infty 1*e^{-st} dt
[/tex]

Because on the interval [itex]0 \leq x < \infty, u(t)=1[/itex].

You should be able to work it out now.

The same holds for the two-sided Laplace transform, because on the interval [itex]-\infty<x<0[/itex] the unit step function is 0.
 
  • #3
HallsofIvy
Science Advisor
Homework Helper
41,795
925
Perhaps what you really want is L(u(t-a)).

[tex]u(t-a)=\begin{cases} 0, & t < a \\ 1, & t \ge a \end{cases}[/tex]

Then
[tex]L(u(t-a))= \int_0^\infty u(t-a)e^{-st} dt= \int_a^\infty e^{-st}dt[/tex]
Let v= t- a. Then t= v+ a, dv= dt, when t= a, v= 0, and when t= [itex]\infty[/itex], v= [itex]\infty[/itex]. The integral becomes
[tex]L(u(t-a)= \int_0^\infty e^{s(v+a)}dv= \int_0^\infty e^{sv}e^{sa}dv[/tex]
[tex]= e^{sa}\int_0^\infty e^{sv}dv= e^{sa}e^{-st}dt[/tex]
and that last integral is the Laplace transform of 1.

That u(t-a) step function multiplying a function basically multiplies the Laplace transform of the function by [itex]e^{as}[/itex].
 

Related Threads for: Laplace tranforms

  • Last Post
Replies
19
Views
2K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
2
Views
2K
  • Last Post
Replies
5
Views
3K
  • Last Post
Replies
2
Views
2K
Replies
3
Views
1K
Replies
1
Views
549
Top