Hello,(adsbygoogle = window.adsbygoogle || []).push({});

By definition, the forward Laplace transform of a function [tex]f(x)[/tex] is:

[tex]\mathcal{L}\left\{f(x)\right\}=\int_0^{\infty}\text{e}^{-sx}f(x)\,dx[/tex].

Can we say the same for the function [tex]f\left(\frac{1}{x}\right)[/tex], i.e.:

[tex]\mathcal{L}\left\{f\left(\frac{1}{x}\right)\right\}=\int_0^{\infty}\text{e}^{-\frac{s}{x}}f\left(\frac{1}{x}\right)\,dx[/tex].??

Thanks in advance

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Laplace Transform Definition

Loading...

Similar Threads - Laplace Transform Definition | Date |
---|---|

I Relating x(t) and y(t) through Laplace transform | Dec 11, 2016 |

I Laplace Transform of tanh(x)? | Apr 29, 2016 |

I How to find Y(s)/X(s) | Mar 30, 2016 |

A question on Laplace transform | Feb 6, 2016 |

[help] A laplace transform definition problem | Aug 9, 2006 |

**Physics Forums - The Fusion of Science and Community**