Laplace transform of t^n

  • #1
I know the final result, its on all the charts. But I need to show step by step how to get the solution.

If someone could help out by getting me in the right direction or just plain giving me the answer, that would be much appreciated:smile:.
 

Answers and Replies

  • #2
nicksauce
Science Advisor
Homework Helper
1,272
5
Well probably a best way would be a proof by induction. Do you know what that is?

Edit: I'll add to this. You want to show [tex]\int_{0}^{\infty}t^ne^{-st}dt=\frac{n!}{s^{n+1}}[/tex] for all non-negative integers n. To do this, first show it is true for n=0. Then assume it is true for arbitrary n, and show that it is true for n+1, ie: [tex]\int_{0}^{\infty}t^ne^{-st}dt=\frac{n!}{s^{n+1}}\rightarrow\int_{0}^{\infty}t^{n+1}e^{-st}dt=\frac{(n+1)!}{s^{n+2}}[/tex]. This can easily be done with an integration by parts.
 
Last edited:
  • #3
HallsofIvy
Science Advisor
Homework Helper
41,833
964
nicksauce, technical point: you should say :"assume it is true for arbitrary n" because that is what you are trying to prove! What you should say is "assume it is true for a single value of n" and then show it is true for n+1. I personally prefer to say "assume it is true for some k" so as not to confuse the specific value with the general value.

Crazy Gnome, the step from n to n+ 1 (or k to k+1) should be easy to do using integration by parts. Oh, and, of course, you need to show it is true for n= 1 or n= 0 depending on whether you are talking about all natural numbers or all whole numbers.
 
  • #4
nicksauce
Science Advisor
Homework Helper
1,272
5
nicksauce, technical point: you should say :"assume it is true for arbitrary n" because that is what you are trying to prove! What you should say is "assume it is true for a single value of n" and then show it is true for n+1. I personally prefer to say "assume it is true for some k" so as not to confuse the specific value with the general value.

Yes, you're right. I meant to say "an arbitrary n" but left out the "an". And yes, using 'k' is indeed much more clear.
 

Related Threads on Laplace transform of t^n

  • Last Post
Replies
5
Views
34K
  • Last Post
Replies
3
Views
13K
  • Last Post
Replies
7
Views
6K
  • Last Post
Replies
1
Views
7K
  • Last Post
Replies
5
Views
947
  • Last Post
Replies
2
Views
2K
  • Last Post
Replies
6
Views
4K
  • Last Post
Replies
5
Views
16K
  • Last Post
Replies
3
Views
25K
  • Last Post
Replies
11
Views
85K
Top