Okay, I know this is alot... but I am stuck, so here goes...(adsbygoogle = window.adsbygoogle || []).push({});

Use the method of Laplace transform to solve the initial value problem

[tex]y''+3ty'-6y=0, y(0) = 1, y'(0) = 0[/tex]

[tex]L\{y'' + 3ty' - 6y\} = L\{0\}[/tex]

[tex]s^{2}Y(s) - sy(0) - y'(0) + 3L\{ty'\} - 6Y(s) = 0[/tex]

[tex]s^{2}Y(s) - s(1) - 0 - \frac{d}{ds}\left(3 L\{ty'\}\right) -6Y(s) = 0[/tex]

Now to resolve the [tex]- \frac{d}{ds}\left(3 L\{ty'\}\right)[/tex]

[tex]= - \frac{d}{ds}\left(3 L\{ty'\}\right)[/tex]

[tex]= - \frac{d}{ds}3 \left(sY(s) - y(0)\right)[/tex]

[tex]= -3sY'(s) - 3Y(s)[/tex]

Plugging it back into the eq we now have

[tex]s^{2}Y(s) - s - 3sY'(s) - 3Y(s) - 6Y(s) = 0[/tex]

[tex]-3sY'(s) + (s^{2}-9)Y(s) - s = 0[/tex]

[tex]Y'(s) + \left(-\frac{s}{3} + \frac{3}{s}\right)Y(s) = -\frac{1}{3}[/tex]

[tex]\mu = e^{\int\left(-\frac{s}{3} + \frac{3}{s}\right)ds}[/tex]

[tex]\mu = e^{\left(-\frac{s^{2}}{6} + ln(s^{3})\right)[/tex]

[tex]\mu = s^{3} e^{\left(-\frac{s^{2}}{6}\right)[/tex]

[tex]\int\left(\frac{d}{ds}(s^{3}e^{-\left(\frac{s^2}{6}\right)}Y(s)\right) = \int-\left(\frac{1}{3}\right)s^{3}e^{-\left(\frac{s^2}{6}\right)} ds[/tex]

[tex]s^{3}e^{-\left(\frac{s^2}{6}\right)}Y(s) = \int-\left(\frac{1}{3}\right)s^{3}e^{-\left(\frac{s^2}{6}\right)} ds[/tex]

RIGHT SIDE

[tex]=\left(\frac{1}{3}\right)(-3(s^{2}+6)e^{-\left(\frac{s^2}{6}\right)[/tex]

[tex]=(s^2+6)e^{-\left(\frac{s^2}{6}\right) + A[/tex]

[tex]Y(s)=\frac{(s^2+6)}{s^{3}} + \frac{A e^ \frac{s^2{6}{s^{3}}[/tex]

[tex] Limit...as... s \rightarrow \infty........Y(s) = 0...therefore A = 0[/tex]

[tex]Y(s) = \frac{s^2+6}{s^3}[/tex]

Break down the Inverse Laplace

[tex]L^{-1}\{\frac{s^2+6}{s^3}\}[/tex]

[tex]=L^{-1}\{\frac{s^2}{s^3}\} + L^{-1}{\frac{6}{s^3}\}[/tex]

[tex]=L^{-1}\{\frac{1}{s}\} + L^{-1}{\frac{6}{s^3}\}[/tex]

[tex]= 1 + ?????? [/tex]

This is where I get lost.... I don't know how to do the other side... Please help.

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Laplace Transofrm using IVP

Loading...

Similar Threads for Laplace Transofrm using | Date |
---|---|

I Laplace's equation | Mar 18, 2018 |

I Laplace's equation in 3 D | Mar 13, 2018 |

A Applying boundary conditions on an almost spherical body | Feb 15, 2018 |

A Causality in differential equations | Feb 10, 2018 |

I Ode using Fourier Transform | Jan 2, 2018 |

**Physics Forums - The Fusion of Science and Community**