Hellow!(adsbygoogle = window.adsbygoogle || []).push({});

I was studying matrix calculus and learned new things as:

[tex]\frac{d\vec{y}}{d\vec{x}}=\begin{bmatrix} \frac{dy_1}{dx_1} & \frac{dy_1}{dx_2} \\ \frac{dy_2}{dx_1} & \frac{dy_2}{dx_2} \\ \end{bmatrix}[/tex]

[tex]\frac{d}{d\vec{r}}\frac{d}{d\vec{r}} = \frac{d^2}{d\vec{r}^2} = \begin{bmatrix} \frac{d^2}{dxdx} & \frac{d^2}{dydx}\\ \frac{d^2}{dxdy} & \frac{d^2}{dydy}\\ \end{bmatrix}[/tex]

Those are the real definition for Jacobian and Hessian. However, the definition for Laplacian is ##\triangledown \cdot \triangledown = \triangledown^2##, that corresponds to ##\frac{d}{d\vec{r}} \cdot \frac{d}{d\vec{r}} = \frac{d^2}{d\vec{r}^2}##, but this definition conflicts with the definition for Hessian that is ##\frac{d^2}{d\vec{r}^2}## too. So, where is the mistake with respect to these definitions? I learned something wrong?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Laplacian and Hessian

**Physics Forums | Science Articles, Homework Help, Discussion**