- #1

ganondorf29

- 54

- 0

## Homework Statement

[/B]

Given the dyad formed by two arbitrary position vector fields,

**u**and

**v**, use indicial notation in Cartesian coordinates to prove:

$$\nabla^2 ({\vec u \vec v}) = \vec v \nabla^2 {\vec u} + \vec u \nabla^2 {\vec v} + 2\nabla {\vec u} \cdot {(\nabla \vec v)}^T

$$

## Homework Equations

[/B]

Per my professor's notes, the Laplacian of a dyad (also a tensor) is given as:

$$

\nabla^2 {\mathbf {S}} = \nabla \cdot {S_{ij,k} \mathbf{e_{i}e_{j}e_{k}}} = S_{ij,kk} \mathbf{e_{i}e_{j}}

$$

## The Attempt at a Solution

[/B]

$$

\nabla^2 {\mathbf {uv}} = (u_{i}v_{j})_{,kk} = u_{i,kk}v_{j} + u_{i}v_{j,kk} \\

u_{i,kk}v_{j} + u_{i}v_{j,kk} = \vec v \nabla^2 {\vec u} + \vec u \nabla^2 {\vec v}

$$

I don't know where the following terms come from:

$$

2\nabla {\vec u} \cdot {(\nabla \vec v)}^T

$$

Does anyone have any suggestions? I feel that I am missing a step or something.