Large crater(s) in Siberia

  • Thread starter Astronuc
  • Start date

Answers and Replies

  • #2
18,184
7,775
Here is the video from the link


Likely a cave system that collapsed?
 
Last edited:
  • #3
davenn
Science Advisor
Gold Member
2019 Award
9,240
7,509
One comment had been that as this is ~ 40 km from a large oil and gas field,
its quite possible that the crater is the result of an underground gas explosion.

Its not just a collapse as the video and other pics I have seen clearly show ejecta

cheers
Dave
 
Last edited:
  • #4
jim hardy
Science Advisor
Gold Member
2019 Award
Dearly Missed
9,839
4,875
My first thought was a lava dome because it looks so black down there. Judging by the streaks on the side of the shaft water has seeped in for some time, ...

Is the local geology there limestone , as around Patomskiy crater?

article-2553841-1B42F17600000578-464_634x422.jpg
 
  • #5
63
4
Here is the video from the link


Likely a cave system that collapsed?
I built a numerical model of what is now happening that predicts the surface air temperature of 54F from only the reported 9.6% CH4 concentration measured at the bottom (~200 feet deep). Here is my model, and a few comments:

"Molecular weight" of air is 98.97 and of CH4 it is 16. Thus the molecular weight of a 9.6% CH4 + 90.4% air mix is: 0.096x16 + 0.904x 28.97 = 27.725 so if down in the hole the temperature is 273K (both ice and water are there) and at the surface the temperature is T, then also assuming the ideal gas law, for there to be net lift in the mix, 27.725 / 28.97 = 0.9570, the lighter molecular density lift must not by more than offset by the temperature contraction increase of the density, which is by the factor 273 / T.

I. e. for 9.6% methane concentration to rise up out of the hole, 0.957 < 273 /T is required. Or T < 273/ 0.957 = 285.266K, which in more familiar units is 12.266C or ~54F. I.e. there should be methane laden air flowing up out of the hole, probably mainly in the center with 54F or colder air descending in an annulus around the column of methane enriched air. On the warmest Siberian days there will also be CH4 enriched air flowing up too, but the CH4 concentration will be higher then than the 9.6% then.

This inflow of CH4 free air would of course reduce the concentration of CH4 in the hole so long as it continues, but a dynamic equilibrium would be reached with the CH4 inflow from the saturated thawing permafrost. The time scale for this dynamic "steady state" to be establish is certainly less than an hour. I.e. the observed 9.6% CH4 concentration was the steady state one when the temperature was about 54F.

Thus by my analysis, I tell you that at the time the 9.6% CH4 was measured, the surface air temperature was ~54F which I think quite reasonable for Siberia at that latitude, in June or July when they measured the 9.6% CH4 concentration. Further more in winter the concentration will be much lower. I.e. the CH4 will be streaming up about as fast as it is being released by the permafrost.

What do you think of my model? What first opened the hole, I don't know, but note this transport of surface air heat down is a mechanism for "fast release of CH4" from the deep methane hydrates - some orders of magnitude faster than thermal conduction down thru ~200 feet of ice and snow.
 
Last edited:
  • #6
20,231
4,264
Hi BillyT,

I'm trying to get an understanding of your model. To test my understanding, I'm going to try to articulate what you are saying, and then I have some questions. So, here goes.

CH4 is being released at the base of the crater. It has a lower density than air, so you are expecting a natural convection cell to be set up within the crater, with CH4 and CH4-laden air rising up the center, while surface air is drawn in around the rim, and flows downward along the sides. The air mixes with the CH4 toward the bottom. Even though the surface air is hotter than the methane below, the methane molecular weight is lower, so the effect of CH4 density wins out. For this to happen, according to your rough calculations, the surrounding air temperature cannot be lower 54F. This value seems to be consistent with the air temperature around the crater in summer.

You noted that all this has nothing to do with how the crater was first established. It is just what is occurring now. You also noted that the convection cell that you are proposing has a significant effect on the rate of heat transfer, and can act as a feedback mechanism for more rapid release of CH4. Somehow, this enhances the rate of growth of the crater?

I have some modeling questions after getting confirmation on my understanding.

Chet
 
  • Like
Likes berkeman
  • #7
jim hardy
Science Advisor
Gold Member
2019 Award
Dearly Missed
9,839
4,875
"Molecular weight" of air is 98.97
slip of the finger? 28.97 is what you used and 29 is what i've used since stone age....
at first i thought somebody had made new units (again)..... :nb)

old jim
 
  • #8
63
4
slip of the finger? 28.97 is what you used and 29 is what i've used since stone age....
at first i thought somebody had made new units (again)..... :nb)

old jim
Yes "sharp eyed" old Jim. Thanks. I am a little dyslexic and did not note that, but fortunately, I got it correct where it mattered:

In this equation: the molecular weight of a 9.6% CH4 + 90.4% air mix is: 0.096x16 + 0.904x 28.97 = 27.725
Hi BillyT, I'm trying to get an understanding of your model. To test my understanding, I'm going to try to articulate what you are saying, and then I have some questions. So, here goes.
CH4 is being released at the base of the crater. It has a lower density than air, so you are expecting a natural convection cell to be set up within the crater, with CH4 and CH4-laden air rising up the center, while surface air is drawn in around the rim, and flows downward along the sides. The air mixes with the CH4 toward the bottom. Even though the surface air is hotter than the methane below, the methane molecular weight is lower, so the effect of CH4 density wins out. For this to happen, according to your rough calculations, when CH4 at the bottom is 9.6% When there is the surrounding air temperature cannot be lower 54F. This value seems to be consistent with the air temperature around the crater in summer.
You noted that all this has nothing to do with how the crater was first established. It is just what is occurring now. You also noted that the convection cell that you are proposing has a significant effect on the rate of heat transfer, and can act as a feedback mechanism for more rapid release of CH4. Somehow, this enhances the rate of growth of the crater?
I have some modeling questions after getting confirmation on my understanding. Chet
You got it right, but I inserted a few clarifying words in green text in your sentence, to make sure that all understand that sentence is not true in general.

What now exists in Siberia, is the world's largest thermometer ! I. e. in the stead state, the bottom CH4 concentration tells the surface air temperature. If for example a warm front rapidly moved over the crater, quickly raising the surface temperature to 60F, that warmer air would be lighter than the 9.6% CH4 concentration mix and the vertical flow would stop, until the CH4 concentration at the bottom rose higher and made the bottom atmosphere, once again have slightly lower density than 60F air. Then a new dynamic equilibrium flow would be established.
Thus in addition to being a thermometer, it is also a large natural vertical pump for CH4.

The way this flow "enhances the rate of growth of the crater" is that convection heat transfer is much more rapid than conduction transfer.

If you do still have more questions ask away, Chet
 
Last edited:
  • #9
63
4
I want to note, that the concentric but reversed flow need not be of a gas. It could be cold 4C bottom water with lots tiny bubbles in it rising up in the center of an annulus of warmer "bubble free" water being pulled down. There are many claims in the literature that the even if the Siberian Arctic shelf did release CH4, perhaps because a "finger" of the much salter and warmer Gulf Stream is now entering and flowing along the shallow bottom, that would not make any contribution to atmospheric CH4 concentrations as the tiny bubbles have a very small "terminal rise velocity" and would all dissolve before reaching the surface.

This "solid theory" is now being refuted by circular columns of water, up to 1Km in diameter, filled with CH4 bubbles so dense that sub sonars can't be used in them. I.e. these methane hydrates are now decomposing and releasing Siberian coastal shelf CH4 into the air in greater volume each year.

Why am I now reminded of reading long ago a few theoretical discussions that the bumble bee's wings were so small and beat so fast that the turbulence would destroy any significant (in comparison to his body weight) lift? Can you guess?

Only problem seems to be, than no one has told the tiny CH4 bubbles or the bumble bee that theory prooves neither can rise up into the air.
 
Last edited:
  • #10
20,231
4,264
You got it right, but I inserted a few clarifying words in green text in your sentence, to make sure that all understand that sentence is not true in general.

What now exists in Siberia, is the world's largest thermometer ! I. e. in the stead state, the bottom CH4 concentration tells the surface air temperature. If for example a warm front rapidly moved over the crater, quickly raising the surface temperature to 60F, that warmer air would be lighter than the 9.6% CH4 concentration mix and the vertical flow would stop, until the CH4 concentration at the bottom rose higher and made the bottom atmosphere, once again have slightly lower density than 60F air. Then a new dynamic equilibrium flow would be established.
Thus in addition to being a thermometer, it is also a large natural vertical pump for CH4.

The way this flow "enhances the rate of growth of the crater" is that convection heat transfer is much more rapid than conduction transfer.

If you do still have more questions ask away, Chet
Hi BillyT,

You mention that the convection heat transfer rate is much more rapid as a result of the circulation driven by the rising CH4, and this flow enhances the rate of growth of the crater. I'm a little confused about this. I thought that the growth of the crater involved actual removal of porous rock from inside the crater. I'm not an expert in geophysics, so maybe that picture is incorrect. Can you give more details on the relationship between the enhanced heat transfer and crater growth?

My understanding is that the current version of the model consists mainly of the rough calculations of buoyancy you described in your first post. If that's the case, I think that it is only suggestive of what might be happening, but without any convincing quantification. Do you plan to do any detailed numerical modeling, say involving computational fluid dynamics to predict the magnitude of the flow velocities involved and the heat transfer rate? You could introduce a methane flux at the base of the crater, and then allow the model to also determine the mixing and the concentration distribution of methane within the crater at steady state. Certainly results of this type would be very valuable in supporting your case.

Chet
 
  • #11
Bystander
Science Advisor
Homework Helper
Gold Member
5,189
1,209
possible that the crater is the result of an underground gas explosion.
clearly show ejecta
One of the links discusses debris/rubble 120 m from edge of crater. Guessing at rim height from pictures, shadow lengths, it doesn't take a long run-out slide to move material that far. Pingo still doesn't look all that unlikely.
 
  • #12
20,231
4,264
By the way, have they determined the mass of the ejecta and compared it with the mass of displacement material from the crater?

Chet
 
  • #13
63
4
Hi BillyT,

You mention that the convection heat transfer rate is much more rapid as a result of the circulation driven by the rising CH4, and this flow enhances the rate of growth of the crater. I'm a little confused about this. I thought that the growth of the crater involved actual removal of porous rock from inside the crater. I'm not an expert in geophysics, so maybe that picture is incorrect. Can you give more details on the relationship between the enhanced heat transfer and crater growth?

My understanding is that the current version of the model consists mainly of the rough calculations of buoyancy you described in your first post. If that's the case, I think that it is only suggestive of what might be happening, but without any convincing quantification. Do you plan to do any detailed numerical modeling, say involving computational fluid dynamics to predict the magnitude of the flow velocities involved and the heat transfer rate? You could introduce a methane flux at the base of the crater, and then allow the model to also determine the mixing and the concentration distribution of methane within the crater at steady state. Certainly results of this type would be very valuable in supporting your case.

Chet
There is clear evidence of water erosion down the sides of the crater. This water also delivers heat to the bottom and helps decompose the CH4 hydrates, that most likely are there and a source of most, if not all, the CH4. I.e. the "porous rocks" may be in large part CH4 ice (CH4 hydrates) that turn to gas and water. It seems clear to me that the volume of the crater hole is much larger than the volume of rim around the top is above the surrounding area. No trucks hauled any dirt / "porous rocks" away.
 
  • #14
20,231
4,264
There is clear evidence of water erosion down the sides of the crater. This water also delivers heat to the bottom and helps decompose the CH4 hydrates, that most likely are there and a source of most, if not all, the CH4. I.e. the "porous rocks" may be in large part CH4 ice (CH4 hydrates) that turn to gas and water. It seems clear to me that the volume of the crater hole is much larger than the volume of rim around the top is above the surrounding area. No trucks hauled any dirt / "porous rocks" away.
So are you saying that the rock filling the crater is close to being unconsolidated, and has a very high porosity?

Chet
 
  • #15
63
4
So are you saying that the rock filling the crater is close to being unconsolidated, and has a very high porosity?

Chet
An aerial view, showing undisturbed tree less than crater radius away. Some in foreground at right at the crater rim. Thus the volume of "rim dirt and "porous rocks" is small compared to hole, ` 200 feet deep & 200 foot diameter.
http://www.bloomberg.com/image/ih7kzr_fknJM.jpg [Broken]
Below is photo from ground level clearly showing water erosion of soft material - possibly dried mud and some of your "porous rocks."
http://www.bloomberg.com/image/iWwHJh58AUDI.jpg [Broken] Note in the foreground left many "drying cracks" typical of drying mud. Note in the inter walls especially at the top left clear stratification levels - Probably accumulated show turned to ice? Here is link to this and some comments there:
[PLAIN said:
http://www.bloomberg.com/news/2014-08-04/warmer-ground-blows-rather-spooky-crater-in-gas-rich-russian-north.html]A[/PLAIN] [Broken] crater recently discovered in the Yamal Peninsula, in Yamalo-Nenets Autonomous Okrug, Russia on July 16, 2014. Russian scientists believe the 60-meter wide crater, discovered recently in far northern Siberia, could be the result of changing temperatures in the region. ... The summers of 2012 and 2013 were about 5 degrees Celsius (9 degrees Fahrenheit) warmer than normal.[/quite]My guess as to how it initially formed is that these two consecutive significantly warner than normal summers melted some surface ice and snow creating a end of summer small shallow lake with 4 degree C water that the bottom that extended over the crater location. At that location some water was able to drain deeper and eroded an every larger path for itself down during later summer of 2013. That drained warmer than 4C surface water, which released more CH4 from the CH4 ice hydrates; but with a 150 to 200 foot long, quasi-vertical column of descending water filling a still narrow channel down, the water column pressure [max of about 14.7psi (~200/32) = 92psi] the decomposing CH4 hydrates' CH4 gas were confined; however, as winter set in the descending water flow greatly decreased and the CH4 gas at about 60+ or - 30 psi basted it way free, in late fall 2013, but the somewhat smaller crater was not discover until the weather warmed in the spring by nomadic natives of the area, who alerted more scientific, helicopter equipped, visitors who arrived on 16 July 2014 to have look.

This is of course just, I think, a plausible, physic-based speculation;. Provided that the location of the crater before it formed was NOT an local high spot. If it is, a local high spot this "Just So" story is nonsense as even if a small shallow lake did form in the exceptionally warm summer of 2013, it would not be over the crater location; however, if the crater location,prior to its formation is near the local lowest elevation, my "just so" story is strengthened.
 
Last edited by a moderator:
  • #16
20,231
4,264
An aerial view, showing undisturbed tree less than crater radius away. Some in foreground at right at the crater rim. Thus the volume of "rim dirt and "porous rocks" is small compared to hole, ` 200 feet deep & 200 foot diameter.
http://www.bloomberg.com/image/ih7kzr_fknJM.jpg [Broken]
Below is photo from ground level clearly showing water erosion of soft material - possibly dried mud and some of your "porous rocks."
http://www.bloomberg.com/image/iWwHJh58AUDI.jpg [Broken] Note in the foreground left many "drying cracks" typical of drying mud. Note in the inter walls especially at the top left clear stratification levels - Probably accumulated show turned to ice? Here is link to this and some comments there:
So you are saying that the original contents of the crater was high porosity rock filled with ice in its pores, and that, once the ice melted the, particles accumulated in the bottom of the crater? Otherwise, where did all the solid rock go?:confused:

Chet
 
Last edited by a moderator:
  • #17
63
4
it [/PLAIN] [Broken][url]http://en.wikipedia.org/wiki/Methane_clathrate]]:
So you are saying that the original contents of the crater was high porosity rock filled with ice in its pores, and that, once the ice melted the, particles accumulated in the bottom of the crater? Otherwise, where did all the solid rock go?:confused:
[/URL]
[/PLAIN] [Broken]
[URL='[PLAIN]http://en.wikipedia.org/wiki/Methane_clathrate'][/PLAIN] [Broken]No. Perhaps you don't know what CH4 ice hydrates are: here (I Hope it posts. If it does not see it at wiki link below of quote, which should be: [url]http://en.wikipedia.org/wiki/Methane_clathrate
) is photo of some of that ice burning including the H20 "Cage" The CH4 is trapped in. Cold temperatures and a minim pressure are required for it to be stable, but so much is that the amount of carbon stored in the CH4 ice is greater than all that in all the coal that ever existed ! (Water has a permanent polarization as the two Hs are only 105 degrees apart and with net + charge, while the O has a negative charge. At lower temperatures water is not one H2O but nH2O atoms in a 3D structure. (many besides the one illustrated as a CH4 cage.) Below 4C these large n atomic structures become so common and general have internal voids, so that is why 3C is lighter than 4c and why ice floats.[/URL]
[/PLAIN] [Broken][URL='[PLAIN]http://en.wikipedia.org/wiki/Methane_clathrate'][/PLAIN] [Broken][/PLAIN] [Broken]http://[URL]http://en.wikipedia.org/wiki/Methane_clathrate [Broken] http://[URL]http://en.wikipedia.org/wiki/Methane_clathrate[/URL]][/url] [Broken] [/PLAIN] [Broken][url]http://en.wikipedia.org/wiki/Methane_clathrate Having trouble posting photo of burning ice. If you know how to, please do it for me. edit time soon to go I'll try t find another.[/URL]
[/PLAIN] [Broken][URL='http://[URL][PLAIN]http://en.wikipedia.org/wiki/Methane_clathrate'][/PLAIN] [Broken]I. e. there need not be much in the way of "porous rocks" to hold tons of of CH4 where that big hole is now.
[URL said:
[url]http://en.wikipedia.org/wiki/Methane_clathrate
[URL said:
]
[PLAIN said:
Methane clathrate (CH4·5.75H2O), also called methane hydrate, methane ice, fire ice, natural gas hydrate, or gas hydrate, is a solid clathrate compound[/PLAIN] [Broken] (more specifically, a [URL='http://en.wikipedia.org/wiki/Clathrate_hydrate']clathrate hydrate) in which a large amount of methane is trapped within a crystal structure of water, forming a solid similar to ice. ... Methane clathrates are common constituents of the shallow marine geosphere and they occur in deep sedimentary structures and form outcrops on the ocean floor. Methane hydrates are believed to form by migration of gas from deep along geological faults, followed by precipitation or crystallization, on contact of the rising gas stream with cold sea water. In 2008 research on Antarctic Vostok and http://en.wikipedia.org/w/index.php?title=EPICA_Dome_C&action=edit&redlink=1 [Broken] ice cores revealed that methane clathrates were also present in deep Antarctic ice cores and record a history of atmospheric methane concentrations, dating to 800,000 years ago.
[/URL]
[/PLAIN] [Broken]
In answer to your last question, the photos indicate there were very little, if any, "solid rocks" - it would not be uncommon for ice from the last ice to be more that 200 feet thick. Even to day in central half of Greenland has an ice cover that is a mile thick. - why if it all melts many coastal cities will be under water if not protected by tall dikes, and they may not work as there are too many drains to the sea that would all need to be sealed.
[/URL][/URL]
 
Last edited by a moderator:
  • #18
20,231
4,264
:
No. Perhaps you don't know what CH4 ice hydrates are: here (I Hope if it does not see it at wiki link below of quote, which should behttp://en.wikipedia.org/wiki/Methane_clathrate ) is photo of some of that ice burning including the H20 "Cage" The CH4 is trapped in. Cold temperatures and a minim pressure are required for it to be stable, but so much is that the amount of carbon stored in the CH4 ice is greater than all that in all the coal that ever existed ! (Water has a permanent polarization as the two Hs are only 105 degrees apart and with net + charge, while the O has a negative charge. At lower temperatures water is not one H2O but nH2O atoms in a 3D structure. (many besides the one illustrated as a CH4 cage.) Below 4C these large n atomic structures become so common and general have internal voids, so that is why 3C is lighter than 4c and why ice floats.
[/imghttp://en.wikipedia.org/wiki/Methane_clathrate [/PLAIN]
I. e. there need not be much in the way of "porous rocks" to hold tons of of CH4 where that big hole is now.

In answer to your last question, the photos indicate there were very little, if any, "solid rocks" - it would not be uncommon for ice from the last ice to be more that 200 feet thick. Even to day in central half of Greenland has an ice cover that is a mile thick. - why if it all melts many coastal cities will be under water if not protected by tall dikes, and they may not work as there are too many drains to the sea that would all need to be sealed.
Thanks very much.

Chet
 
  • #19
81
3
Just a couple of pieces of data from a chemist: when flammable gases mix with air they may or may not form an explosive mixture. Too much gas (above the Upper Explosive Limit) and the ignited gases starve for oxygen to support combustion. Too little gas (below the Lower Explosive Limit) and the flame cannot propagate to the other fuel molecules. For methane in air the LEL is 5.0% methane, and the UEL is 15.0% methane. The 9.6% reported was definitely a prime candidate for a fuel-air explosion: http://en.wikipedia.org/wiki/Thermobaric_weapon

Solid methane hydrate (as it is called in the pipeline industry) forms readily when methane and water are in contact with each other at a temperature below 55° F. When warmed above this temperature it slowly 'sublimes' (evaporates directly from the solid), possibly leaving a small puddle of water (depending on the humnidity). Pipeline operators may add methanol to their pipelines to prevent the water from forming clathrates with methane.

Ethane, propane, and argon also form clathrates with water because the molecules are small enough to fit inside the cages that water can form.
 
  • #20
63
4
upload_2015-1-9_12-39-55.png
Just a couple of pieces of data from a chemist: when flammable gases mix with air they may or may not form an explosive mixture. Too much gas (above the Upper Explosive Limit) and the ignited gases starve for oxygen to support combustion. Too little gas (below the Lower Explosive Limit) and the flame cannot propagate to the other fuel molecules. For methane in air the LEL is 5.0% methane, and the UEL is 15.0% methane. The 9.6% reported was definitely a prime candidate for a fuel-air explosion: http://en.wikipedia.org/wiki/Thermobaric_weapon

Solid methane hydrate (as it is called in the pipeline industry) forms readily when methane and water are in contact with each other at a temperature below 55° F. When warmed above this temperature it slowly 'sublimes' (evaporates directly from the solid), possibly leaving a small puddle of water (depending on the humnidity). Pipeline operators may add methanol to their pipelines to prevent the water from forming clathrates with methane.

Ethane, propane, and argon also form clathrates with water because the molecules are small enough to fit inside the cages that water can form.
Thanks. I agree, 9.6% CH4 in air is very explosive. Here, if it posts, are the stability curves for methane in cold deep ocean and in tundra.http://[URL]http://t1.gstatic.com/images?q=tbn:ANd9GcTBR90UhBDBA0iA7sq2i_ygcuJ602Hsd8N5E_Es_7VI_cD6q63e [Broken][/URL] I have had trouble posting graphs so try several ways and remove worst if more than one works, by edit. If none do: See them here http://large.stanford.edu/courses/2010/ph240/harrison1/: Looks like one did and two tries did not. Why it is at top of this post and small, I don't know.
http://[ATTACH=full]77475[/ATTACH] [Broken] [URL]http://large.stanford.edu/courses/2010/ph240/harrison1/images/f3big.gif [Broken][/URL]
 
Last edited by a moderator:
  • #22
63
4
Thanks. Here from your link:
"The karst topography also poses difficulties for human inhabitants. Sinkholes can develop gradually as surface openings enlarge, but quite often progressive erosion is unseen and the roof of an underground cavern suddenly collapses. Such events have swallowed homes, cattle, cars, and farm machinery. ... The karstification of a landscape may result in a variety of large- or small-scale features both on the surface and beneath. On exposed surfaces, small features may include flutes, runnels, clints and grikes, collectively called karren or lapiez. Medium-sized surface features may include sinkholes or cenotes (closed basins), vertical shafts, foibe (inverted funnel shaped sinkholes), disappearing streams, and reappearing springs."

But do they form raised elevation rim rings?

TadChem in post 19 said:
"Too little gas (below the Lower Explosive Limit) and the flame cannot propagate to the other fuel molecules. For methane in air the LEL is 5.0% methane, and the UEL is 15.0% methane. The 9.6% reported was definitely a prime candidate for a fuel-air explosion: http://en.wikipedia.org/wiki/Thermobaric_weapon"

Do you know how that activation energy needed to start the explosion compares to the thermal energy (both in eV I hope) for that 9.6% CH4 / air mix at 0C?
 
Last edited:
  • #24
DrClapeyron
Thanks. Here from your link:
"The karst topography also poses difficulties for human inhabitants. Sinkholes can develop gradually as surface openings enlarge, but quite often progressive erosion is unseen and the roof of an underground cavern suddenly collapses. Such events have swallowed homes, cattle, cars, and farm machinery. ... The karstification of a landscape may result in a variety of large- or small-scale features both on the surface and beneath. On exposed surfaces, small features may include flutes, runnels, clints and grikes, collectively called karren or lapiez. Medium-sized surface features may include sinkholes or cenotes (closed basins), vertical shafts, foibe (inverted funnel shaped sinkholes), disappearing streams, and reappearing springs."

But do they form raised elevation rim rings?

TadChem in post 19 said:
"Too little gas (below the Lower Explosive Limit) and the flame cannot propagate to the other fuel molecules. For methane in air the LEL is 5.0% methane, and the UEL is 15.0% methane. The 9.6% reported was definitely a prime candidate for a fuel-air explosion: http://en.wikipedia.org/wiki/Thermobaric_weapon"

Do you know how that activation energy needed to start the explosion compares to the thermal energy (both in eV I hope) for that 9.6% CH4 / air mix at 0C?
Water has a negative Clapeyron slope. :) That can explain why water solidifies from exterior to interior. If you go to google maps and look at the Yamal you will see plenty of circular structures - ice rings and ponds. Ice rings form on both ground and in frozen water bodies. What I wonder is if there is bacterial mediation of these structures. Circular microbial structures are not uncommon in nature.
 
  • #25
63
4
Just a couple of pieces of data from a chemist: when flammable gases mix with air they may or may not form an explosive mixture. Too much gas (above the Upper Explosive Limit) and the ignited gases starve for oxygen to support combustion. Too little gas (below the Lower Explosive Limit) and the flame cannot propagate to the other fuel molecules. For methane in air the LEL is 5.0% methane, and the UEL is 15.0% methane. The 9.6% reported was definitely a prime candidate for a fuel-air explosion: http://en.wikipedia.org/wiki/Thermobaric_weapon

Solid methane hydrate (as it is called in the pipeline industry) forms readily when methane and water are in contact with each other at a temperature below 55° F. When warmed above this temperature it slowly 'sublimes' (evaporates directly from the solid), possibly leaving a small puddle of water (depending on the humnidity). Pipeline operators may add methanol to their pipelines to prevent the water from forming clathrates with methane.

Ethane, propane, and argon also form clathrates with water because the molecules are small enough to fit inside the cages that water can form.
Water has a negative Clapeyron slope. :) That can explain why water solidifies from exterior to interior. If you go to google maps and look at the Yamal you will see plenty of circular structures - ice rings and ponds. Ice rings form on both ground and in frozen water bodies. What I wonder is if there is bacterial mediation of these structures. Circular microbial structures are not uncommon in nature.
Again thanks. You said: "Water has a negative Clapeyron slope. That can explain why water solidifies from exterior to interior."

I thought everthing did that as the heat flow is from the interior and leaves to a cooler environment via the exterior's contact with it. Does anything freeze solid in the interior first, with liquid surrounding that solid?

I am pressed for time just now, so will need to investigate what a "negative Clapeyron slope" implies that may be different from this simple "freezing is by cooling the exterior" idea.
 

Related Threads on Large crater(s) in Siberia

  • Last Post
Replies
3
Views
3K
  • Last Post
Replies
1
Views
3K
Replies
4
Views
4K
  • Last Post
Replies
8
Views
3K
  • Last Post
Replies
3
Views
3K
Replies
1
Views
620
Replies
8
Views
3K
  • Last Post
Replies
1
Views
3K
Replies
5
Views
3K
Replies
1
Views
2K
Top