This is what I am talking about. Take some QFT. Write a Euclidean space-time discrete version of the action and then use numerical methods to evaluate Green´s functions. The inverse lattice spacing serves as a momentum cutoff...
One of the most interesting field theories to be studied on the lattice is QCD. QCD is a very complicated theory, with many non-perturbative aspects. The lattice offers a way to investigate, from first principles, such aspects. In the low-energy regime, the QCD coupling becomes too large for any perturbative expansion to make sense. Confinement and hadron structure are among the things one can study in Lattice QCD: hadron masses (QCD spectroscopy in general, including glueballs), hadronic matrix elements.
A good intro can be found in:
hep-lat/9807028
Agreement with experiment has been striking in many cases.
I am working my way through the tutorial, and I wondered, gnl what is your topic? And are you going to be doing monte carlo estimations of path integrals like it says?
My field of research, so far, has been lattice QCD. I have done works on hadron spectroscopy and on the study of leptonic anc semileptonic decays. These decays involve some non-perturbative quantity, like decay constants or form factors.
These objects are calculated as MC estimates (numerical path integral!) of time-ordered products of fields. For example, given the operator that creates a meson with given quantum numbers from the vacuum, one that creates another meson , and a current, lots of things can be calculated.
Lattice QCD needs BIG CPUS!!! However, lots of interesting physics can still be explored with scalar models. The Higgs boson, after all, is such a field!
We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling We Value Civility
• Positive and compassionate attitudes
• Patience while debating We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving