- #1
Shackleford
- 1,656
- 2
I'm taking Abstract Algebra right now, and we just briefly covered Logic and Truth Tables. This is my first time in school to learn such things.
http://i111.photobucket.com/albums/n149/camarolt4z28/IMG_20110712_195458.jpg
37. I understand.
39. I understand.
41. I don't understand the last column. Is the implication (p ∧ q) ⇒ p true because (p ∧ q) gives you no information on whether p is true? Why?
43. For p ⇒ q, I understand the first two column entries (T,F), is the implication because p being False gives no information on whether p ⇒ q is True? Again, for the last column, is
(p ∧ (p ⇒ q)) True because it being False gives you no new information on q?
If my reasoning is correct, then I can see the following logical consistencies here. Also, I notice for the implications ⇒, there is an additional column asking for its truth value. But, there is no such thing for the iff ⇔ statements. Why?
http://i111.photobucket.com/albums/n149/camarolt4z28/IMG_20110712_195458.jpg
37. I understand.
39. I understand.
41. I don't understand the last column. Is the implication (p ∧ q) ⇒ p true because (p ∧ q) gives you no information on whether p is true? Why?
43. For p ⇒ q, I understand the first two column entries (T,F), is the implication because p being False gives no information on whether p ⇒ q is True? Again, for the last column, is
(p ∧ (p ⇒ q)) True because it being False gives you no new information on q?
If my reasoning is correct, then I can see the following logical consistencies here. Also, I notice for the implications ⇒, there is an additional column asking for its truth value. But, there is no such thing for the iff ⇔ statements. Why?
Last edited by a moderator: