I found a particular integral in my stat book.(adsbygoogle = window.adsbygoogle || []).push({});

[itex] \frac{d}{ d\theta}\int^{b(\theta)}_{a(\theta)}f(\theta,t)dt =

\int^{b(\theta)}_{a( \theta)}\frac{ \partial}{ \partial \theta}f( \theta ,t)dt +

f( \theta, b( \theta)) \frac {\partial b(\theta)}{ \partial \theta} -

f(\theta, a(\theta))\frac{ \partial a(\theta)}{\partial \theta} [/itex]

Why is this the case? Why is it not...

[itex] \int^{b(\theta)}_{a(\theta)}f(\theta,t)dt =

\int^{b(\theta)}_{a( \theta)}\frac{ \partial}{ \partial \theta}f( \theta ,t)dt +

\frac{d}{ d\theta} [F( \theta, b( \theta)) - F(\theta, a(\theta))]

[/itex]

EDITED: Fixing LaTeX, as per usual. Sorry Folks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Leibnitz Rule For an Integral.

**Physics Forums | Science Articles, Homework Help, Discussion**