I know that legendre polynomials are solutions of the differential equation is (1-x^2)d^2y/dx^2 - 2x dy/dx+l(l+1)y=0 where l is an integer. The first five solutions are P0(x)=1, P1(x)=x, P2(x)=3/2x^2-1/2, P3(x)=5/2x^3-3/2x, P4(x)=35/8x^4-15/4x^2+3/8(adsbygoogle = window.adsbygoogle || []).push({});

The problem is that I don't understand what the problem is telling me to do. It says to show that each of the polynomials Pl(x) solves the differentil equation with its particular value l. Do I just plug in l? For example, for P0(x)=1, would I plug in 1 for x and 0 for l? I'm really confused.

Another problem is that I have to show by doing 10 integrals that if l is not equal to m, that integral from -1 to 1 dxPl(x)Pm(x)=0 so that these polynomials are orthogonal on the interva1 [-1,1].

Do I just take a value for l and one for m 10 times. So for the first integral, m=1 and n=2?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Lengendre polynomials

**Physics Forums | Science Articles, Homework Help, Discussion**