Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I Less gravity vs. dark energy

  1. Aug 8, 2017 #1

    ohwilleke

    User Avatar
    Gold Member

    One way to get the universe to expand is with dark energy that pulls at the matter of the galaxy separating it or equivalently for space-time to not be perfectly flat.

    An alternative, in principle, would be for the gravitational pull between objects like galaxies and galactic clusters to be suppressed for some reason relative to the "GR without cosmological constant" prediction. Instead of being tugged apart from the outside, these objects would not be held together a strongly as expected. For example, perhaps gravity is a very long range, but not infinite range force, or perhaps dark matter absorbs gravitons thereby reducing the amount of gravitational pull that can escape the system with dark matter in it which could also address the "coincidence problem".

    Lots of published academic work explores the dark energy possibility.

    Is anyone aware of any peer review work/academic pre-prints that explore the suppressed gravitational field possibility as an explanation for the phenomena commonly attributed to dark energy?

    This question is inspired by ideas sketched out on a back of napkin basis by A. Deur in published peer reviewed work, but the question is more general.
     
  2. jcsd
  3. Aug 8, 2017 #2

    mfb

    User Avatar
    2016 Award

    Staff: Mentor

    Even without any gravitational attraction you wouldn't get an accelerated expansion as we observe it.
     
  4. Aug 8, 2017 #3

    ohwilleke

    User Avatar
    Gold Member

    Why not?

    Isn't one gravitational force pulling two objects together combined with another pulling them apart equivalent to a single net force that is weaker than the gravitational force pulling the two objects together in the first scenario, and couldn't increasing distance over time cause this to accelerate if the fall off/suppression was related to distance? The scenario Deur explains doesn't do that, but one could imagine one where galaxies have KE from the big bang whose suppression by gravity falls off increasingly as they get further would would seem to look like acceleration (and might even change sign at some distance) (although even if it can't explain fully dark energy acceleration it could still quantitatively greatly reduce the amount of DE that was needed to get the same result).

    A representative paper sketching out the idea without developing it very much is:

    Implications of Graviton-Graviton Interaction to Dark Matter
    A. Deur
    (Submitted on 26 Jan 2009 (v1), last revised 6 May 2009 (this version, v2))
    Our present understanding of the universe requires the existence of dark matter and dark energy. We describe here a natural mechanism that could make exotic dark matter and possibly dark energy unnecessary. Graviton-graviton interactions increase the gravitational binding of matter. This increase, for large massive systems such as galaxies, may be large enough to make exotic dark matter superfluous. Within a weak field approximation we compute the effect on the rotation curves of galaxies and find the correct magnitude and distribution without need for arbitrary parameters or additional exotic particles. The Tully-Fisher relation also emerges naturally from this framework. The computations are further applied to galaxy clusters.
    Comments: Version published in Phys. Lett. B. Added material: 1) We explicited the steps leading from the Einstein-Hilbert Lagrangian to our simplified Lagrangian. 2) We showed how the Tully-Fisher relation emerges naturally from our framework. 3) We added a discussion on the approximations we used
    Subjects: Cosmology and Nongalactic Astrophysics (astro-ph.CO); High Energy Physics - Phenomenology (hep-ph)
    Journal reference: Phys.Lett.B676:21-24,2009
    DOI: 10.1016/j.physletb.2009.04.060
    Cite as: arXiv:0901.4005 [astro-ph.CO]
    (or arXiv:0901.4005v2 [astro-ph.CO] for this version)

    The relevant portion of the linked article explains that:

    Finally, just to be clear, I'm not interested so much in Deur's specific proposal here, so much as identifying if anyone else has explored conceptually similar concepts in academic articles. The hope is that someone in the crowd at Physics Forum BSM may have seen theories that I am unaware of explored somewhere credible.
     
    Last edited: Aug 8, 2017
  5. Aug 8, 2017 #4

    mfb

    User Avatar
    2016 Award

    Staff: Mentor

    Second Friedmann equation:$$\frac{\ddot{a}}{a} = -\frac{4 \pi G}{3}\left(\rho+\frac{3p}{c^2}\right) + \frac{\Lambda c^2}{3}$$

    ##\rho \geq 0## and ##p\geq 0##. With ##\Lambda=0## and ##G\geq 0##, we cannot get the positive ##\ddot a## we observe, even if we set the effective G to 0, which means absolutely no gravitational effect on the expansion of the universe.
    Sure, you need a smaller amount of dark energy if you reduce the effective G. So what. You still need it.
     
  6. Aug 8, 2017 #5

    ohwilleke

    User Avatar
    Gold Member

    Among other things, it dramatically reduces the total amount of stuff in the universe, because dark matter and dark energy cancel out, rather than adding to each other, and if there is a whole realm of possibilities that haven't even been probed theoretically at a superficial level, we could miss parts of parameter space that are interesting or important. For example, if you need much less dark energy than you would otherwise, you open up potential dark energy mechanism that otherwise wouldn't be worth considering because they are the wrong magnitude.
     
  7. Aug 8, 2017 #6

    mfb

    User Avatar
    2016 Award

    Staff: Mentor

    Dark energy is 70% of the total energy density, and we know the cosmological constant with an accuracy of about 2%. Yes, if you remove all the impact of matter with a model*, its value would go down a bit, but you there is nothing magic about the current density. You would just get another value which we cannot calculate from deeper principles.

    *that is problematic in the early universe which was matter-dominated
     
  8. Aug 9, 2017 #7
    Its important to stress that this depends on the measurement your making. They cancel out when measuring the expansion rate of the universe ( via supernovae 1a ) But when measuring the angular scale of the peak in the CMB anisotropy spectrum (which depends on the spatial geometry of the universe ) they actually add up.
    See this combination plot to see how reducing both dark energy and dark matter won't fit the data:

    http://supernova.lbl.gov/union/figures/Union2.1_Om-Ol_slide.pdf
     
  9. Aug 9, 2017 #8

    ohwilleke

    User Avatar
    Gold Member

    This is right in the context of fitting lambda CDM parameters in a model dependent way. But, these conclusions are outside their domain of applicability in the context of a radically different model from the lambda CDM paradigm.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Less gravity vs. dark energy
  1. Dark Energy (Replies: 6)

Loading...