- #1

- 31

- 0

1. lim [(1+x)^(1/x) - e ] / x

x ->0

2. lim [sin(2/x)+cos(1/x)]^x

x -> inf

help....

x ->0

2. lim [sin(2/x)+cos(1/x)]^x

x -> inf

help....

Last edited:

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter mousesgr
- Start date

- #1

- 31

- 0

1. lim [(1+x)^(1/x) - e ] / x

x ->0

2. lim [sin(2/x)+cos(1/x)]^x

x -> inf

help....

x ->0

2. lim [sin(2/x)+cos(1/x)]^x

x -> inf

help....

Last edited:

- #2

HallsofIvy

Science Advisor

Homework Helper

- 41,847

- 967

- #3

- 31

- 0

qs 1 is not 0/0 or inf/inf from

how do consider L'Hopital's rule???

how do consider L'Hopital's rule???

- #4

HallsofIvy

Science Advisor

Homework Helper

- 41,847

- 967

If you have [tex]lim_{x->a} \frac{f(x)}{g{x}}[/tex] where f(a)= 0 and g(a)= 0, then the limit is the same as [tex]lim_{x->a}\frac{\frac{df}{dx}}{\frac{dg}{dx}}[/tex].

If you get things like [tex]0^0[/tex] or [tex]\infty^{\infty}[/tex] (as your second limit), you can take logarithms to reduct to the first case.

- #5

VietDao29

Homework Helper

- 1,424

- 3

#1 is in form 0 / 0.mousesgr said:qs 1 is not 0/0 or inf/inf from

how do consider L'Hopital's rule???

Since:

[tex]\lim_{x \rightarrow 0} (1 + x) ^ {\frac{1}{x}} = e[/tex]

So the numerator will tend to 0 as x approaches 0. The denominator also tends to 0. So it's 0 / 0.

You can use L'Hopital's rule to solve for #1.

-------------------

#2 is [tex]1 ^ \infty[/tex]

First, you can try to take logs of both sides.

So let [tex]y = \lim_{x \rightarrow \infty} \left[ \sin \left( \frac{2}{x} \right) + \cos \left( \frac{1}{x} \right) \right] ^ x[/tex]. So:

[tex]\ln y = \ln \left\{ \lim_{x \rightarrow \infty} \left[ \sin \left( \frac{2}{x} \right) + \cos \left( \frac{1}{x} \right) \right] ^ x \right\} = \lim_{x \rightarrow \infty} \ln \left[ \sin \left( \frac{2}{x} \right) + \cos \left( \frac{1}{x} \right) \right] ^ x[/tex]

[tex]= \lim_{x \rightarrow \infty} x \ln \left[ \sin \left( \frac{2}{x} \right) + \cos \left( \frac{1}{x} \right) \right] = \lim_{x \rightarrow \infty} \frac{\ln \left[ \sin \left( \frac{2}{x} \right) + \cos \left( \frac{1}{x} \right) \right]}{\frac{1}{x}}[/tex]

This is 0 / 0. So again, you can apply L'Hopital's rule to find the limit.

Viet Dao,

Share: