to get the derivative i have to use the chain rule so it would be.
lim
x- 0+ (x(tan(4x)^x-1)(sec^2(4)
Answers and Replies
#2
Metaleer
124
0
Hey, jpd5184.
First you have to identify what kind of indeterminate form you have. Can you see you have the form 0^0?
To apply L'Hospital's rule, remember that you need to have [tex]\frac{0}{0}[/tex] or [tex]\frac{\pm \infty}{\pm \infty}[/tex]. What can do you do to transform this 0^0 indeterminate form to one of these? Hint: think of the log function and its properties.
Also, although you do not need it here because you do NOT just differentiate the function itself, the derivative, with respect to x, of [itex]f(x)^x[/itex] is NOT "[itex]x f(x)^{x-1}[/itex]". The power rule only works when the power is a constant, not a function of x.