1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Lie subalgebra

  1. Sep 24, 2011 #1
    1. The problem statement, all variables and given/known data

    Let [itex]\mathfrak{g}[/itex] be the vector subspace in the general linear lie algebra [itex]\mathfrak{gl}_4 \mathbb{C}[/itex] consisting of all block matrices [tex]A=\begin{bmatrix} U& W\\ 0 & V\end{bmatrix}[/tex] where [itex]U,V[/itex] are any 2x2 matrices of trace 0 and [itex]W[/itex] is any 2x2 matrix.

    Show that [itex]\mathfrak{g}[/itex] is a lie subalgebra in [itex]\mathfrak{gl}_4 \mathbb{C}[/itex].

    2. Relevant equations

    A subspace [itex]\mathfrak{g}[/itex] of [itex]\mathfrak{gl}_4 \mathbb{C}[/itex] is a lie subalgebra of [itex]\mathfrak{gl}_4 \mathbb{C}[/itex] if for all [itex]x,y\in\mathfrak{g}[/itex] it follows that [itex][x,y]\in\mathfrak{g}[/itex] where [itex][\cdot , \cdot ][/itex] is the lie bracket in [itex]\mathfrak{gl}_4 \mathbb{C}[/itex] (the matrix commutator: [X,Y]=XY-YX).

    3. The attempt at a solution

    Let [itex]A=\begin{bmatrix} U & W \\ 0 & V \end{bmatrix},B=\begin{bmatrix} X & Z \\ 0 & Y \end{bmatrix}\in\mathfrak{g}[/itex]

    Then [itex][A,B]=AB-BA=\begin{bmatrix} U & W \\ 0 & V \end{bmatrix} \begin{bmatrix} X & Z \\ 0 & Y \end{bmatrix} - \begin{bmatrix} X & Z \\ 0 & Y \end{bmatrix} \begin{bmatrix} U & W \\ 0 & V \end{bmatrix}[/itex].

    [itex]= \begin{bmatrix} UX & UZ+WY \\ 0 & VY \end{bmatrix} - \begin{bmatrix} XU & XW+ZV \\ 0 & YV \end{bmatrix}[/itex]

    [itex]= \begin{bmatrix} UX - XU & XW+ZV - WX- VZ\\ 0 & VY - YV \end{bmatrix}[/itex]

    How can I show [itex][A,B]\in\mathfrak{g}[/itex] ?
     
    Last edited: Sep 24, 2011
  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted