- #1
- 256
- 0
[tex]X_1, X_2, \ldots[/tex] are iid random variables with [tex]P ( X_1 = n ) = P ( X_1 = - n ) = \frac{ c }{ n^2 \log n }[/tex] where c makes the probabilities sum to one. Define [tex]S_n = X_1 + \ldots + X_n[/tex]. We want to show that
[tex]\limsup \frac{S_n}{n} =\infty[/tex] and [tex]\liminf \frac{S_n}{n} = -\infty[/tex] almost surely.
I've managed to use the Borel-Cantelli lemma to show that [tex]P(|X_n| \geq n \text{ infinitely often}) = 1[/tex], but I can't pass to the lim sup/inf. Any help/suggestions would be appreciated.
[tex]\limsup \frac{S_n}{n} =\infty[/tex] and [tex]\liminf \frac{S_n}{n} = -\infty[/tex] almost surely.
I've managed to use the Borel-Cantelli lemma to show that [tex]P(|X_n| \geq n \text{ infinitely often}) = 1[/tex], but I can't pass to the lim sup/inf. Any help/suggestions would be appreciated.