1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Lim x->0+ 1/x sin(1/x) = ?

  1. Sep 24, 2005 #1
    hello everyone, im' really confused on how this is going to work....
    I can't even graph this function. Does anyone know what this would equal and why? I know i don't have any work, because i'm totally lost on how i'm suppose to figure this out, if i had a graph it would be easy. Thanks! or lim x->0+ x*sin(1/x); I know this is calc I stuff and i'm in calc III but i'm helping out a friend.
     
  2. jcsd
  3. Sep 24, 2005 #2

    Tom Mattson

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Do a change of variables: Let u=1/x.
     
  4. Sep 24, 2005 #3
    You must first simplify 1/x*sin(1/x), which would come out to [sin(1/x)]/x

    Use L'Hopital's Rule to differentiate both sides. The derivative of [sin(1/x)] = cos(1/x)*(-1/x^2) and the derivative of x = 1, right?

    So the problem simplifies to lim(x-->0) cos(1/x)*(-1/x^2).

    Both cos(1/x) and (-1/x^2) are undefined at x = 0, so what's the answer? There is none. It doesn't exist.

    If you graph this, you'll see that as x-->0 from the left side, y goes down to negative infinity, and as x-->0 from the right side, y goes up to positive infinity. And since both sides don't approach the same number, there is no limit. (And even if you approach it from different sides, you get a nonexistent answer.)

    (Can someone confirm the above method where I used L'Hopital's? I think it's correct, but I'm uncertain.)
     
    Last edited: Sep 24, 2005
  5. Sep 24, 2005 #4

    Tom Mattson

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    phreak: At Physics Forums we avoid posting solutions until it becomes evident that the person asking the question has exhausted every attempt to solve the problem himself. Until then, we give nudges in the right direction.

    Hold up there: You can only use L'Hopital for the indeterminate forms [itex]0/0[/itex] and [itex]\infty/\infty[/itex]. This is neither.
     
  6. Sep 24, 2005 #5
    Oh, that's right. I was thinking of something else... Sorry.
     
  7. Sep 24, 2005 #6
    Thanks for the replies, but If i let u = 1/x, i get u*sin(u). I'm not suppose to integrate by substitution am i? its a limit problem, so phreaks method is incorrect?
     
  8. Sep 24, 2005 #7

    Tom Mattson

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    :confused: Where do you see an integration sign?

    No, you're just changing the variable. So you get u*sin(u). Now, as x approaches 0, what does u approach? Rewrite the limit using that change of variables, and evaluate it.

    Yes, it's incorrect for the reason I stated.
     
  9. Sep 24, 2005 #8
    ohh sorry i don't know what i was thinking, i never knew you could let u = 1/x. well as x approaches 0 on the right side it goes to infinity and x approaches 0 on the left side its negative infitiy so there is no limit there. So does this prove that 1/x*sin(x) = no limit?
     
  10. Sep 24, 2005 #9

    lurflurf

    User Avatar
    Homework Helper

    A good way to show that
    [tex]\lim_{x\rightarrow 0}f(x)[/tex]
    does not exist would be to show that for some value h>0
    any open interval contaning 0 will contain points x and y such that
    |f(x)-f(y)|>h
     
  11. Sep 24, 2005 #10
    lurflurf, that sounds good but i don't understand it... |f(x)-f(y)| >h, how is that showing there is no limit?
     
  12. Sep 25, 2005 #11

    lurflurf

    User Avatar
    Homework Helper

    If the limit exist then if x is close enough to 0, f(x) and f(y) will also be close together as they are both close to the limit.
    Thus if |f(x)-f(y)| cannot be made small by making |x-y| small, the limit cannot exist.
    It is important to note |xy|>0.
    Two nice example of this are (for x->0) 1/x and sin(1/x)
    your example combines them.
    Consider the function
    f(x)=x+10^-50 if 1/x=n^n for some integer n
    f(x)=x otherwise
    clearly the limit does not exist because
    |2n^-n-n^-n| can be made very small by taking n (integral) large, but no matter how large n is
    |f(2n^-n)-f(n^-n)|=10^-50>10^-57
     
  13. Sep 25, 2005 #12

    lurflurf

    User Avatar
    Homework Helper

    I do not know what limit you wish to show does not exist.
    Many limits have been stated that are not the same.
    The suggested change of variable is for the two variations
    [tex]\lim_{x\rightarrow 0^+} \ x \ \sin\left(\frac{1}{x}\right)=\lim_{u\rightarrow\infty} \ \frac{\sin(u)}{u}[/tex]
    [tex]\lim_{x\rightarrow 0^+} \ \frac{1}{x} \ \sin\left(\frac{1}{x}\right)=\lim_{u\rightarrow\infty} u \ \sin(u)[/tex]
     
  14. Sep 25, 2005 #13

    lurflurf

    User Avatar
    Homework Helper

    bold type inside quote is my comments
     
  15. Sep 25, 2005 #14
    thank u so much, that makes sense now!!
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Lim x->0+ 1/x sin(1/x) = ?
  1. Lim x->0- |x| = -x (Replies: 20)

Loading...