Lim(x->inf) of ((x+a)/(x-a))^x = e

  • Thread starter techtown
  • Start date
3
0
lim(x-->inf) of ((x+a)/(x-a))^x = e

I started this problem and quickly became stuck, the question asks for what value of "a" is the following true:

lim(x-->inf) of ((x+a)/(x-a))^x = e

I took the natural log of both sides to start and got this:

lim(x-->inf) of x*ln((x+a)/(x-a)) = 1

I've tried going on from here but nothing in the end makes sense and i don't know any other way to start the problem; any help is appriciated, thanks.
 
Last edited:
92
0
The text is wrong:

[tex]\lim_{\substack{x\rightarrow 0}}f(x) = 1 , \forall a \in \mathbb{R}[/tex]

whereas

[tex]\lim_{\substack{x\rightarrow \infty}}f(x) = e^{2a}[/tex]

Ok?
 
Last edited:
3
0
ah, yes, i did mean for x to go to infinity; but how did you get e^2a?
 
92
0
[tex]\lim_{\substack{ x \rightarrow \infty}} {(\frac {x+a}{x-a})}^x = \lim_{\substack{ x \rightarrow \infty}} {(1+ \frac {2a}{x-a})}^x = \\
\lim_{\substack{ y \rightarrow \infty}} {(1+ \frac {2a}{y})}^{y+a}= [/tex]
[tex]\lim_{\substack{y \rightarrow \infty}} {(1+ \frac {2a}{y})}^y {(1+ \frac {2a}{y})}^a =
\\ \lim_{\substack{y\rightarrow \infty}}{(1+ \frac {2a}{y})}^y = e^{2a}[/tex]
 
Last edited:
3
0
thank you, i think i have it now
 

Related Threads for: Lim(x->inf) of ((x+a)/(x-a))^x = e

Replies
11
Views
15K
  • Posted
2
Replies
45
Views
188K
Replies
2
Views
4K
Replies
5
Views
2K
  • Posted
Replies
14
Views
26K
  • Posted
Replies
12
Views
9K
  • Posted
Replies
15
Views
2K
  • Posted
Replies
14
Views
134K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Hot Threads

Top