Limit calculation

  • Thread starter phonic
  • Start date
  • #1
28
0
Dear members,

I am calculating the following limit:

[tex]
\lim_{t\rightarrow \infty} \sum_{k=1}^{t-2} \frac{\lambda^{t-k-1}}{k}
[/tex]
where
[tex]
0 < \lambda <1
[/tex]

Does any body know how to do it? Thanks a lot!
 

Answers and Replies

  • #2
rachmaninoff
A hint:

[tex]0\leq \lim_{t\rightarrow \infty} \sum_{k=1}^{t-2} \frac{\lambda^{t-k-1}}{k}=\lim_{t\rightarrow \infty} \lambda^t \sum_{k=1}^{t-2} \frac{\lambda^{k-1}}{k} \leq \lim_{t\rightarrow \infty} \lambda^t \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{k}[/tex]
 
Last edited by a moderator:

Related Threads on Limit calculation

  • Last Post
Replies
1
Views
1K
Replies
1
Views
1K
  • Last Post
Replies
4
Views
2K
  • Last Post
Replies
24
Views
4K
Replies
1
Views
552
Replies
10
Views
18K
  • Last Post
Replies
4
Views
3K
Replies
7
Views
1K
Replies
12
Views
3K
  • Last Post
Replies
6
Views
5K
Top