(adsbygoogle = window.adsbygoogle || []).push({});

Find tangent slope to parabola using Theorem 2.

[tex]y(x) = x^2 + 2x \; \text{at} \; P(-3.3)[/tex]

Theorem 2:

[tex]m = \lim_{h \rightarrow 0} \frac{f(a + h) - f(a)}{h}[/tex]

[tex]m = \lim_{h \rightarrow 0} \frac{(a + h)^2 + 2(a + h) - 3}{h} = \lim_{h \rightarrow 0} \frac{a^2 + h^2 + 2ah + 2a + 2h - 3}{h}[/tex]

[tex]\lim_{h \rightarrow 0} \frac{a^2 + h^2 + 2ah + 2a + 2h - 3}{h} = \lim_{h \rightarrow 0} \frac{(a + h - 1)(a + h + 3)}{h}[/tex]

:uhh:

I have already solved the tangent line using the Tangent Line Theorem, however, I have been unable to eliminate [tex]h[/tex] from the denominator in this theorem using division or numerator conjugates...

Any suggestions?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Limit help!

**Physics Forums | Science Articles, Homework Help, Discussion**