- #1

- 202

- 0

**infinite**sum, is the limit of the sum = sum of the limit?

ie.

[tex]

lim_{x \rightarrow a} \sum_{n=0}^\infty f(x,n)= \sum_{n=0}^\infty lim_{x \rightarrow a}f(x,n)

[/tex]

- Thread starter Apteronotus
- Start date

- #1

- 202

- 0

ie.

[tex]

lim_{x \rightarrow a} \sum_{n=0}^\infty f(x,n)= \sum_{n=0}^\infty lim_{x \rightarrow a}f(x,n)

[/tex]

- #2

- 258

- 0

[tex]

\sum_{n=0}^{\infty} f(x,n)

[/tex]

converges uniformly. In general, however, no.

- #3

- 202

- 0

Thank you L'Hopital!!!

- Last Post

- Replies
- 5

- Views
- 11K

- Last Post

- Replies
- 3

- Views
- 6K

- Last Post

- Replies
- 1

- Views
- 7K

- Last Post

- Replies
- 6

- Views
- 8K

- Last Post

- Replies
- 2

- Views
- 1K

- Replies
- 3

- Views
- 2K

- Replies
- 3

- Views
- 1K

- Replies
- 18

- Views
- 1K

- Replies
- 3

- Views
- 2K

- Replies
- 2

- Views
- 3K