To integrate functions as the limit of an integral sum, how can we know which way to take the partition points in the interval?(adsbygoogle = window.adsbygoogle || []).push({});

For example, in

[tex] \int_{a}^{b} x dx [/tex]

I can take the partition points as

[tex] x_o = a [/tex]

[tex] x_1 = a + \delta x [/tex]

...

[tex] x_k = a+ k\delta x[/tex]

where [tex] \delta x = \frac{b-a}{n} [/tex]

So that the sum is [tex] \sum_{k=1}^{n} f(x_{k-1}) \delta x [/tex]

But to integrate

[tex] \int_{a}^{b} \sqrt{x} dx [/tex]

If I take the partition points as above the sum will be

[tex] (\delta x)(\sqrt{a} + \sqrt{a+ \delta x} + ... ) [/tex]

which I cannot find.

I can solve the question if I take the partition points as

[tex] x_0 = a [/tex]

[tex] x_1 = aq [/tex]

...

[tex] x_k=aq^k [/tex]

Where [tex] q=(\frac{b}{a})^(1/n) [/tex].

{The idea to take it this way was given as a hint in the book}

So, is there any other specific manner in which I should spilt the partition points and if so is there a general method in which I can know how to take the values of x_0, x_1, x_2 to solve the problem?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Limit of the Integral Sum

**Physics Forums | Science Articles, Homework Help, Discussion**