1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Limit problem: natural log

  1. Nov 18, 2005 #1
    Hi all.
    I'm slightly confused with the following limit prob:
    [tex]\lim_{x\rightarrow \infty} \frac{(ln (x))^n}{x}[/tex]
    which I know = 0. (n is a positive integer)
    It looks like it's of indeterminate form, that is
    [tex]\frac{\infty}{\infty}[/tex]
    Using L'Hopital's, it looks like you get another indeterminate form:
    [tex]\lim_{x\rightarrow \infty} \frac{n(ln (x))^{n-1}}{x}[/tex]
    ...and so on and so on.
    Is it correct to assume that, applying L'Hopital's n times, you'll eventually get:
    [tex]\lim_{x\rightarrow \infty} \frac{n\cdot (n-1)\cdot (n-2) \cdot ... \cdot 1}{x}[/tex]
    which is equal to zero?
    Thanks,
    Bailey
     
    Last edited: Nov 18, 2005
  2. jcsd
  3. Nov 18, 2005 #2
    I edited the above...hopefully it looks clearer.

    Isn't the derivative of the natural log [tex]1/x[/tex]
    and you keep on doing it "n" times...so you always end up with an "x" in the denominator when applying L'Hopital's rule...until you get [tex]1/x[/tex] with all of the "n" terms in the numerator.

    Please correct me if I'm wrong.
    Bailey
     
  4. Nov 18, 2005 #3
    yes thats right. chain rule. no matter what positive integer n, in the end you will have some fixed number in the numerator but the denominator goes to infinity so it wins out and the limit will be zero.
     
  5. Nov 18, 2005 #4
    Thanks...I wanted to make sure I was on the right track.

    Best wishes,
    bailey
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Limit problem: natural log
  1. Limit of natural log (Replies: 2)

Loading...