Limit question

  • Thread starter talolard
  • Start date
  • #1
125
0

Homework Statement


I've done thsi limit, i think I'm half right. I'm sure I have done something wrong, but I'm not sure what.

[tex] lim_{x-> \infty} ( \frac {x+lnx}{x-lnx})^(x/lnx) [/tex]


The Attempt at a Solution


[tex] lim_{x-> \infty} ( \frac {x+lnx}{x-lnx})^{x/lnx} = lim_{x-> \infty} ( \frac {x(1 +\frac {lnx}{x})}{x(1- \frac {lnx}{x})})^{x/lnx}= [/tex]
[tex]
t= \frac {x}{lnx}; lim_{t-> \infty} (\frac {1 + \frac {1}{t}} {1 - \frac{1}{t}})^t= [/tex]
[tex] \frac {e}{e^{-1}}=e^2 [/tex]
 
Last edited:

Answers and Replies

  • #2
vela
Staff Emeritus
Science Advisor
Homework Helper
Education Advisor
15,270
1,864
That's right.
 

Related Threads on Limit question

  • Last Post
Replies
1
Views
997
  • Last Post
Replies
3
Views
754
  • Last Post
Replies
2
Views
820
  • Last Post
Replies
2
Views
609
  • Last Post
Replies
7
Views
767
  • Last Post
Replies
10
Views
1K
  • Last Post
Replies
6
Views
1K
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
2
Views
1K
  • Last Post
Replies
7
Views
996
Top