I have questions regarding this subject.(adsbygoogle = window.adsbygoogle || []).push({});

By definition, [tex]\limsup_{k \to \infty} f(x_k) \equiv \lim_{k \to \infty} \sup_{n \geq k} f(x_n)[/tex] and [tex]\liminf_{k \to \infty} f(x_k) \equiv \lim_{k \to \infty} \inf_{n \geq k} f(x_n)[/tex]. Say a sequence [tex]\{x_k\}[/tex] converging to [tex]0[/tex] from the left in the following example.

[tex]f(y) = \left\{

\begin{array}{ll}

y + 1 & \quad ,y > 0 \\

y & \quad ,y \leq 0

\end{array}

\right.[/tex]

Then [tex]\limsup_{k \to \infty} f(x_k) = \liminf_{k \to \infty} f(x_k) = f(0)[/tex].

Suppose we have another sequence [tex]\{x_k\}[/tex] converging to [tex]0[/tex] from the right. Then [tex]\limsup_{k \to \infty} f(x_k) = \liminf_{k \to \infty} f(x_k) > f(0)[/tex].

What is the difference between [tex]\limsup_{k \to \infty} f(x_k)[/tex] and [tex]\liminf_{k \to \infty} f(x_k)[/tex]? I don't see any difference.

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Limit Superior/Inferior

Loading...

Similar Threads - Limit Superior Inferior | Date |
---|---|

Limit Inferior and Limit Superior | Aug 21, 2011 |

Explanation of Limit Superior/Inferior | Feb 7, 2011 |

A question about limit superior for function | Aug 26, 2010 |

Limit superior: definition and notation | Jan 17, 2010 |

Limit superior/inferior | Mar 27, 2007 |

**Physics Forums - The Fusion of Science and Community**