I have questions regarding this subject.(adsbygoogle = window.adsbygoogle || []).push({});

By definition, [tex]\limsup_{k \to \infty} f(x_k) \equiv \lim_{k \to \infty} \sup_{n \geq k} f(x_n)[/tex] and [tex]\liminf_{k \to \infty} f(x_k) \equiv \lim_{k \to \infty} \inf_{n \geq k} f(x_n)[/tex]. Say a sequence [tex]\{x_k\}[/tex] converging to [tex]0[/tex] from the left in the following example.

[tex]f(y) = \left\{

\begin{array}{ll}

y + 1 & \quad ,y > 0 \\

y & \quad ,y \leq 0

\end{array}

\right.[/tex]

Then [tex]\limsup_{k \to \infty} f(x_k) = \liminf_{k \to \infty} f(x_k) = f(0)[/tex].

Suppose we have another sequence [tex]\{x_k\}[/tex] converging to [tex]0[/tex] from the right. Then [tex]\limsup_{k \to \infty} f(x_k) = \liminf_{k \to \infty} f(x_k) > f(0)[/tex].

What is the difference between [tex]\limsup_{k \to \infty} f(x_k)[/tex] and [tex]\liminf_{k \to \infty} f(x_k)[/tex]? I don't see any difference.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Limit Superior/Inferior

**Physics Forums | Science Articles, Homework Help, Discussion**