# Limit with L'Hopital's rule

#### Maged Saeed

1. Homework Statement

How can I fount the following limit using L'H'opetal rule?
$$\lim_{x\rightarrow+\infty}(ln(2x)-ln(x-4))$$

2. Homework Equations

3. The Attempt at a Solution
I tried to use the low
$$\lim_{x\rightarrow a} f(x)=\lim_{x\rightarrow a}e^{ln(f(x))}=e^l$$
But it seems to be useless

Many thanks for Help,.

Related Calculus and Beyond Homework Help News on Phys.org

#### Dick

Homework Helper
1. Homework Statement

How can I fount the following limit using L'H'opetal rule?
$$\lim_{x\rightarrow+\infty}(ln(2x)-ln(x-4))$$

2. Homework Equations

3. The Attempt at a Solution
I tried to use the low
$$\lim_{x\rightarrow a} f(x)=\lim_{x\rightarrow a}e^{ln(f(x))}=e^l$$
But it seems to be useless

Many thanks for Help,.
Start by using some rules of logs, like ln(a)-ln(b)=ln(a/b). Can you find the limit of the a/b part?

#### Maged Saeed

$$\lim_{x\rightarrow+\infty}(ln(2x)-ln(x-4))$$
$$\lim_{x\rightarrow+\infty}(ln \frac{2x}{x-4})$$

Yes I can use L'H'opetal rule to find (a/b)

$$\lim_{x\rightarrow+\infty}ln(\frac{2x}{x-4})$$
$$\lim_{x\rightarrow+\infty}ln(\frac{2}{1})$$

Oh,, it will be ln(2) .

But how can I use L'H'opetal rule inside the (ln)?

Thanks_For_Help
:)

#### Dick

Homework Helper
$$\lim_{x\rightarrow+\infty}(ln(2x)-ln(x-4))$$
$$\lim_{x\rightarrow+\infty}(ln \frac{2x}{x-4})$$

Yes I can use L'H'opetal rule to find (a/b)

$$\lim_{x\rightarrow+\infty}ln(\frac{2x}{x-4})$$
$$\lim_{x\rightarrow+\infty}ln(\frac{2}{1})$$

Oh,, it will be ln(2) .

But how can I use L'H'opetal rule inside the (ln)?

Thanks_For_Help
:)
Because ln is a continuous function. If $\lim_{x\rightarrow+\infty} f(x)=L$ and $L>0$ then $\lim_{x\rightarrow+\infty} ln(f(x))=ln(L)$. Use l'Hopital to find the limit of the expression inside the ln.

#### SteamKing

Staff Emeritus
Homework Helper
$$\lim_{x\rightarrow+\infty}(ln(2x)-ln(x-4))$$
$$\lim_{x\rightarrow+\infty}(ln \frac{2x}{x-4})$$

Yes I can use L'H'opetal rule to find (a/b)

$$\lim_{x\rightarrow+\infty}ln(\frac{2x}{x-4})$$
$$\lim_{x\rightarrow+\infty}ln(\frac{2}{1})$$

Oh,, it will be ln(2) .

But how can I use L'H'opetal rule inside the (ln)?

Thanks_For_Help
:)
Why do you want to use l'Hopital's rule inside the log?

#### Maged Saeed

Why do you want to use l'Hopital's rule inside the log?
I'm supposed to solve it by L'Hopital's rule .
But I didn't think about another idea to solve it.

#### Maged Saeed

Is there another way to do it?

Mentor

#### ehild

Homework Helper
Is there another way to do it?
$$\lim_{x\rightarrow \infty} \frac{2x}{x-4}=\lim_{x\rightarrow \infty}\frac{2}{1-4/x}$$
4/x goes to zero ...

#### Maged Saeed

$$\lim_{x\rightarrow \infty} \frac{2x}{x-4}=\lim_{x\rightarrow \infty}\frac{2}{1-4/x}$$
4/x goes to zero ...
The right answer is ln (2)

Thus , I should evaluate the limit inside the (ln) then the final answer should be put in the (ln).

#### ehild

Homework Helper
The right answer is ln (2)

Thus , I should evaluate the limit inside the (ln) then the final answer should be put in the (ln).
Yes :)

### Want to reply to this thread?

"Limit with L'Hopital's rule"

### Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving