Limit with L'Hopital's rule

  • #1
Maged Saeed
123
3

Homework Statement



How can I fount the following limit using L'H'opetal rule?
$$\lim_{x\rightarrow+\infty}(ln(2x)-ln(x-4))$$

Homework Equations




The Attempt at a Solution


I tried to use the low
$$\lim_{x\rightarrow a} f(x)=\lim_{x\rightarrow a}e^{ln(f(x))}=e^l$$
But it seems to be useless

Many thanks for Help,.
 

Answers and Replies

  • #2
Dick
Science Advisor
Homework Helper
26,263
621

Homework Statement



How can I fount the following limit using L'H'opetal rule?
$$\lim_{x\rightarrow+\infty}(ln(2x)-ln(x-4))$$

Homework Equations




The Attempt at a Solution


I tried to use the low
$$\lim_{x\rightarrow a} f(x)=\lim_{x\rightarrow a}e^{ln(f(x))}=e^l$$
But it seems to be useless

Many thanks for Help,.

Start by using some rules of logs, like ln(a)-ln(b)=ln(a/b). Can you find the limit of the a/b part?
 
  • Like
Likes Maged Saeed
  • #3
Maged Saeed
123
3
$$\lim_{x\rightarrow+\infty}(ln(2x)-ln(x-4))$$
$$\lim_{x\rightarrow+\infty}(ln \frac{2x}{x-4})$$

Yes I can use L'H'opetal rule to find (a/b)

$$\lim_{x\rightarrow+\infty}ln(\frac{2x}{x-4})$$
$$\lim_{x\rightarrow+\infty}ln(\frac{2}{1})$$

Oh,, it will be ln(2) .

But how can I use L'H'opetal rule inside the (ln)?

Thanks_For_Help
:)
 
  • #4
Dick
Science Advisor
Homework Helper
26,263
621
$$\lim_{x\rightarrow+\infty}(ln(2x)-ln(x-4))$$
$$\lim_{x\rightarrow+\infty}(ln \frac{2x}{x-4})$$

Yes I can use L'H'opetal rule to find (a/b)

$$\lim_{x\rightarrow+\infty}ln(\frac{2x}{x-4})$$
$$\lim_{x\rightarrow+\infty}ln(\frac{2}{1})$$

Oh,, it will be ln(2) .

But how can I use L'H'opetal rule inside the (ln)?

Thanks_For_Help
:)

Because ln is a continuous function. If ##\lim_{x\rightarrow+\infty} f(x)=L## and ##L>0## then ##\lim_{x\rightarrow+\infty} ln(f(x))=ln(L)##. Use l'Hopital to find the limit of the expression inside the ln.
 
  • #5
SteamKing
Staff Emeritus
Science Advisor
Homework Helper
12,809
1,670
$$\lim_{x\rightarrow+\infty}(ln(2x)-ln(x-4))$$
$$\lim_{x\rightarrow+\infty}(ln \frac{2x}{x-4})$$

Yes I can use L'H'opetal rule to find (a/b)

$$\lim_{x\rightarrow+\infty}ln(\frac{2x}{x-4})$$
$$\lim_{x\rightarrow+\infty}ln(\frac{2}{1})$$

Oh,, it will be ln(2) .

But how can I use L'H'opetal rule inside the (ln)?

Thanks_For_Help
:)

Why do you want to use l'Hopital's rule inside the log?
 
  • #6
Maged Saeed
123
3
Why do you want to use l'Hopital's rule inside the log?

I'm supposed to solve it by L'Hopital's rule .
But I didn't think about another idea to solve it.
 
  • #7
Maged Saeed
123
3
Is there another way to do it?
 
  • #9
ehild
Homework Helper
15,543
1,915
Is there another way to do it?
[tex]\lim_{x\rightarrow \infty} \frac{2x}{x-4}=\lim_{x\rightarrow \infty}\frac{2}{1-4/x}[/tex]
4/x goes to zero ...
 
  • #10
Maged Saeed
123
3
[tex]\lim_{x\rightarrow \infty} \frac{2x}{x-4}=\lim_{x\rightarrow \infty}\frac{2}{1-4/x}[/tex]
4/x goes to zero ...

The right answer is ln (2)

Thus , I should evaluate the limit inside the (ln) then the final answer should be put in the (ln).
 
  • #11
ehild
Homework Helper
15,543
1,915
The right answer is ln (2)

Thus , I should evaluate the limit inside the (ln) then the final answer should be put in the (ln).

Yes :)
 
  • Like
Likes Maged Saeed

Suggested for: Limit with L'Hopital's rule

  • Last Post
Replies
14
Views
562
  • Last Post
Replies
1
Views
219
  • Last Post
Replies
7
Views
901
  • Last Post
Replies
6
Views
1K
  • Last Post
Replies
5
Views
796
  • Last Post
Replies
3
Views
388
Replies
3
Views
1K
Replies
3
Views
284
Replies
6
Views
80
Top