Hi Ho!(adsbygoogle = window.adsbygoogle || []).push({});

Mmmm... I have a problem with this one:

[itex]\lim_{x\rightarrow-\infty} \frac{x}{\sqrt{z^2+x^2}}[/itex]

Using a computer graphics tool, I found that the result should be -1 by looking at the generated graph.

But if I do it by hands, I find 1 as follows:

[itex]\lim_{x\rightarrow-\infty} \frac{x}{\sqrt{z^2+x^2}} = \lim_{x\rightarrow-\infty} \frac{x \frac{1}{x}}{\sqrt{z^2+x^2} \frac{1}{x}}[/itex]

[itex]= \lim_{x\rightarrow-\infty} \frac{1}{\sqrt{\frac{z^2+x^2}{x^2}}}[/itex]

[itex]= \lim_{x\rightarrow-\infty} \frac{1}{\sqrt{1+(\frac{z}{x})^2}}[/itex]

[itex]= \frac{1}{\sqrt{1+(\frac{z}{-\infty})^2}}[/itex]

[itex]= \frac{1}{\sqrt{1+0}}[/itex]

[itex]= \frac{1}{1}[/itex]

[itex]= 1[/itex]

Would you please correct my mistake?

Thank you very much!

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Limit x->-infinity (x/(z^2+x^2)^0.5) = ?

Loading...

Similar Threads for Limit infinity z^2+x^2 | Date |
---|---|

I Is it possible to find the limit of (1+1/x)^x as x approaches -infinity? | May 28, 2017 |

I Proving limit theorems when limit tends to infinity | May 6, 2016 |

Unusual Limit involving e | Jan 18, 2016 |

Limits at infinity | May 18, 2015 |

The limit of xye^-(x+y)^2 when x^2+y^2 approach infinity | Mar 18, 2015 |

**Physics Forums - The Fusion of Science and Community**