- #1
juantheron
- 247
- 1
Evaluation of \(\displaystyle \displaystyle \lim_{n\rightarrow \infty}\sum^{n}_{k=1}\bigg(\frac{k}{n^2}\bigg)^{\frac{k}{n^2}+1}\)
Evaluation of \(\displaystyle \displaystyle \lim_{n\rightarrow \infty}\sum^{n}_{k=1}\bigg(\frac{k}{n^2}\bigg)^{\frac{k}{n^2}+1}\)
Brilliant intuition, Satya! But this is a math forum, not an engineering forum, so your argument needs a few sticking plasters to make it rigorous.Evaluation of \(\displaystyle \displaystyle \lim_{n\rightarrow \infty}\sum^{n}_{k=1}\bigg(\frac{k}{n^2}\bigg)^{\frac{k}{n^2}+1}\)We can set the followings:
\(\displaystyle
dx=\frac{1}{n}\)
and
\(\displaystyle
x=\frac{k}{n}
\)
As \(\displaystyle n\rightarrow \infty\) \(\displaystyle \sum\) is replaced with \(\displaystyle \int\).
So, we finally have:
\(\displaystyle
\int_{0}^{1} (x dx)^{1 +x dx}
=> \int_{0}^{1} x dx ((x dx)^{x})^{dx}
\)
Term inside () in above integration will be one because in limiting case \(\displaystyle dx \rightarrow 0.\) To be honest I might be taking a leap here. :)
So, the problem actually reduces to:
\(\displaystyle
\int_{0}^{1} x dx
\)
Whose value is 0.5.
One more variation. This time with an integral as Satya suggested.
Let $s_n = \sum^{n}_{k=1}\left(\frac{k}{n^2}\right)^{\frac{k}{n^2}+1}$.
Let $x_k = \frac kn$ and $\Delta x = \frac 1n$.
Then it follows from the definition of a Riemann integral that:
$$\lim_{n\to\infty}\sum_{k=1}^n x_k\Delta x = \int_0^1 x\,dx \tag 1$$
Using $\lim\limits_{x\to 0^+} x^x = 1$ we can find the following, as explained in my previous solution.
For every $\varepsilon > 0$ there is an $N$ such that for all $n>N$ and all $1\le k \le n$:
$$1-\varepsilon < (x_k \Delta x)^{x_k \Delta x} < 1+\varepsilon \tag 2$$
We have:
$$
s_n =\sum^{n}_{k=1}\bigg(\frac{k}{n^2}\bigg)^{\frac{k}{n^2}+1}
= \sum^{n}_{k=1}(x_k\Delta x)^{x_k\Delta x+1}
= \sum^{n}_{k=1}x_k\Delta x(x_k\Delta x)^{x_k\Delta x}
$$
Therefore, using (2) for $n>N$:
$$
\sum^{n}_{k=1}x_k\Delta x(1-\varepsilon) < s_n < \sum^{n}_{k=1}x_k\Delta x(1+\varepsilon)\\
(1-\varepsilon)\lim_{n\to\infty}\sum^{n}_{k=1}x_k\Delta x \le \lim_{n\to\infty} s_n \le (1+\varepsilon)\lim_{n\to\infty}\sum^{n}_{k=1}x_k\Delta x\\
$$
With (1) we get:
$$(1-\varepsilon) \int_0^1 x\,dx \le \lim_{n\to\infty}s_n \le (1+\varepsilon) \int_0^1 x\,dx$$
which holds true for every $\epsilon>0$.
Thus:
$$\lim_{n\to\infty} s_n = \int_0^1 x\,dx = \frac 12$$