I'm stuck on what to do here. The question reads Consider a population P(t) satisfying the logistic equation dP/dt = aP-bP^2, where B = aP is the time rate at which births occur and D = bP^2 is the rate at which deaths occer. If the intial population is P(0) = P_0 (supposed to be P sub not), and B_0 births per month and D_0 deaths per month are occuring at time t=0, show that the limiting population is M = (B_0*P_0)/D_0.(adsbygoogle = window.adsbygoogle || []).push({});

My question is am I setting this up right? Where do I go from my last spot to get it to look like M = (B_0*P_0)/D_0?

Here's what I got:

1) dP/dt=(aP-bP^2)P

2) dP/dt=(a-bP)P^2

3) integral((1/P^2)+bP)dp = integral(a)dt

4) ????? Please Help ?????

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Limiting population

**Physics Forums | Science Articles, Homework Help, Discussion**