Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Limits and L'Hopital

  1. Aug 12, 2005 #1
    Hi,

    I'm having trouble determining this limit:

    [tex]\lim_{x\rightarrow0^+}\frac{\sqrt{x}\sin\sqrt{x}}{1-e^{-x}}[/tex]​

    It's a 0/0 type of expression, so it seems like L'Hopital's rule should be applicable, but no matter how many times I differentiate I keep getting 0/0-expressions. Any hints?

    Also, the next question is to solve this integral:

    [tex]\int_0^{\pi^2}\sqrt{x}\sin\sqrt{x}dx[/tex]​

    I haven't tried solving it, but since I haven't yet been able to answer any question in this whole damn exercise, I think it's a safe bet that I can't do this either. Any hints here? :biggrin:
     
  2. jcsd
  3. Aug 12, 2005 #2

    TD

    User Avatar
    Homework Helper

    For [itex]\int \sqrt{x}\sin\sqrt{x}dx[/itex]

    Try a substitution: [itex]y = \sqrt x \Leftrightarrow y^2 = x \Leftrightarrow 2ydy = dx[/itex]

    Which would give: [itex]2\int {y^2 \sin \left( y \right)dy} [/itex]

    For the limit, if L'Hopital doesn't work, you could do it with Taylor Series.
     
    Last edited: Aug 12, 2005
  4. Aug 12, 2005 #3
    when i take the derivitive of 1 - e^-x i get e^-x

    and when x approches 0 i get 1 so shouldnt you get f'(x) / 1 while using l'hopitals rule
    which is not 0 / 0
     
  5. Aug 12, 2005 #4

    lurflurf

    User Avatar
    Homework Helper

    [tex]\lim_{x\rightarrow0^+}\frac{\sqrt{x}\sin(\sqrt{x})}{ 1-e^{-x}}=\lim_{x\rightarrow0^+} \ \frac{-x}{e^{-x}-1} \ \ \frac{\sin(\sqrt{x})}{\sqrt{x}}}[/tex]
    Do these limits look familar? pehaps something like
    [tex]\lim_{x\rightarrow 0} \frac{\sin(x)}{x}[/tex]
    and
    [tex]\lim_{x\rightarrow 0} \frac{e^x-1}{x}[/tex]
     
    Last edited: Aug 12, 2005
  6. Aug 13, 2005 #5
    the derivative of 1 - e^(-x) at x = 0 is 0?
     
  7. Aug 13, 2005 #6
    It's 1. L'Hoptial works. So does lurflurf's suggestion, which goes back to some analysis theorems about limits of products.
     
  8. Aug 13, 2005 #7
    Thanks for answering. But I can't see how L'Hopital works, since [tex]f'(x)=\frac1{2\sqrt{x}}\sin\sqrt{x} + \frac1{2}\cos\sqrt{x}[/tex] - you can't plug in x because of the sqrt(x) in the denominator, no?
     
  9. Aug 13, 2005 #8

    VietDao29

    User Avatar
    Homework Helper

    L'Hospital does work:
    [tex]\lim_{x \rightarrow 0 ^ +} \frac{\sqrt{x} \sin{\sqrt{x}}}{1 - e ^ {-x}}[/tex]
    [tex]= \lim_{x \rightarrow 0 ^ +} \frac{\frac{\sin{\sqrt{x}}}{2 \sqrt{x}} + \frac{\cos{\sqrt{x}}}{2}}{e ^ {-x}}[/tex]
    [tex]= \frac{\frac{1}{2} + \frac{1}{2}}{1} = 1[/tex]
    Due to:
    [tex]\lim_{x \rightarrow 0 ^ +} \frac{\sin{\sqrt{x}}}{\sqrt{x}} = 1[/tex]
    Viet Dao,
     
    Last edited: Aug 13, 2005
  10. Aug 13, 2005 #9

    lurflurf

    User Avatar
    Homework Helper

    It is a limit.
    What is
    [tex]\lim_{x\rightarrow 0} \ \frac{\sin(x)}{x}[/tex]
     
    Last edited: Aug 13, 2005
  11. Aug 13, 2005 #10
    I know it's a limit :D

    But this is a strictly mathematical course, and I'm only supposed to use the rules in our textbook, so I can't just use rules other than these (like lim(sin(x)/x)=1, x->0). I guess, though, the way you suggest is the only possible one, so I'll do it like that anyway. Thanks!
     
  12. Aug 13, 2005 #11

    VietDao29

    User Avatar
    Homework Helper

    You can also prove:
    [tex]\lim_{x\rightarrow 0} \ \frac{\sin(x)}{x} = 1[/tex]
    using L'Hopital rule.
    [tex]\lim_{x\rightarrow 0} \ \frac{\sin(x)}{x} = \lim_{x \rightarrow 0}\cos{x} = 1[/tex]
    Viet Dao,
     
  13. Aug 13, 2005 #12

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    If you have covered L'hopital's rule, then you have certainly already covered
    [tex]lim_{x->0}\frac{sin x}{x}= 1[/tex]!

    (And if you haven't it is certainly simple to prove it using L'hopital's rule!)
     
  14. Aug 13, 2005 #13
    "prove it" might not be the correct choice of words..
     
  15. Aug 13, 2005 #14

    lurflurf

    User Avatar
    Homework Helper

    I really hope
    lim(sin(x)/x)=1, x->0
    is in you text book
    even if it were not you should be able to show it the way you show any limit.
    It seems you like the theorem that for a continuous function
    [tex]\lim_{x\rightarrow a} f(x)=f(a)[/tex]
    so here you go
    let f(x)=sin(x)/x when x is not 0
    and f(x)=1 when x is 0
    then
    lim(sin(x)/x), x->0=f(1)=1
    also f can be written
    [tex]f(x)=\int_0^1 \cos(x t) dt[/tex]
    in this form it's continuity is obvious.
    or if you like power series
    f(x)=1-x^2/3!+x^4/5!-x^6/7!+...+(-1)^n x^(2n)/(2n+1)!+...
     
  16. Aug 15, 2005 #15
    I know. That's why I asked the question!
     
  17. Aug 16, 2005 #16
    Is that right to say? You're assuming the derivative of [tex]\sin x[/tex] is [tex]\cos x[/tex] to prove [tex]\lim_{x \rightarrow 0} \frac{\sin x}{x} = 1[/tex] but actually the limit (together with the AoL) is normally used to prove the derivative of [tex]\sin x[/tex]. Normally one would use the sandwich rule to find the limit.
     
  18. Aug 16, 2005 #17

    lurflurf

    User Avatar
    Homework Helper

    You are assuming a specific definition of sin(x). It is possible to know sin'(x)=cos(x) without knowing lim x->0 sin(x)/x=1 and the reverse. What is important is that knowing either makes it easy to find the other. What would be bad (and some books do this) would be to try to prove one of these, then get the other as a step then say it follows from what you are trying ti prove. The "Normally" you use is of course the resolution. By normally I presume you mean "How it is done in the large number of popular calculus texts that are very much alike". We need not do things as they are done normally.
     
    Last edited: Aug 16, 2005
  19. Aug 16, 2005 #18
    "Calculations" of this kind possess no conclusive power.

    For example:
    [tex]\lim_{x\rightarrow0}\frac{e^x-1}{x}[/tex]

    Differentiating the numerator and the denominator gives:
    [tex]\lim_{x\rightarrow0}\frac{e^x}{1}=1[/tex]

    But to know that [tex]D(e^x) = e^x[/tex] we must master [tex]\lim_{x\rightarrow0}\frac{e^x-1}{x}[/tex]
     
  20. Aug 16, 2005 #19

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    No, that doesn't follow: as lurflurf said, there are different ways of defining sine and cosine x. For example, it is perfectly valid to define y= sin x as:
    The function satisfying the differential equation y"= -y with initial value conditions
    y(0)= 0, y'(0)= 1.
    Then define y= cos x as:
    The function satisfying the differential equation y"= -y with initial value conditions
    y(0)= 1, y'(0)= 0.
    That isn't normally done in basic calculus books, of course, but it is more rigorous than the usual definitions of sine and cosine functions.

    It is then easy to prove that (sin x)'= cos x and then use L'hopital's rule to derive [itex]lim_{x\rightarrow0}\frac{sin x}{x}= 1[/itex].

    Indeed, since you mention ex, many calculus texts first define ln (x) by
    [itex]ln(x)= \int_1^x \frac{1}{t}dt[/itex]. It's easy to show that that function has all the properties we expect of ln(x) including, obviously, that its derivavative is [itex]\frac{1}{x}[/itex] as well as the fact that it is a one-to-one function and so has an inverse.

    If you then define exp(x) to be the inverse of ln(x) it follows easily that exp(x) is differentiable and has derivative equal to exp(x) itself. One could then use L'hopital's rule to show that [itex]lim_{x\rightarrow0}\frac{e^x-1}{x}= 1[/itex].
    Once can also, by the way, prove that exp(x)= (exp(1))x.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Limits and L'Hopital
  1. L'Hopital's Rule (Replies: 7)

  2. L'Hopital's rule (Replies: 19)

Loading...