- #1
- 313
- 4
The problem
$$ \lim_{x \rightarrow \infty} \left( \sqrt{x+1} - \sqrt{x} \right) $$
The attempt
## \left( \sqrt{x+1} - \sqrt{x} \right) = \frac{\left( \sqrt{x+1} - \sqrt{x} \right)\left( \sqrt{x+1} + \sqrt{x} \right) }{\left( \sqrt{x+1} + \sqrt{x} \right) } = \frac{x+1 - x }{\left( \sqrt{x+1} + \sqrt{x} \right) } = \frac{1 }{x \left( \sqrt{\frac{1}{x}+\frac{1}{x^2}} + \sqrt{\frac{1}{x}} \right) } = \frac{1}{x} \frac{1 }{ \sqrt{\frac{1}{x}+\frac{1}{x^2}} + \sqrt{\frac{1}{x}} } \\ \rightarrow 0 \cdot \frac{1}{0 + 0} ## for ## x \rightarrow \infty ## division with 0 is undefined. Can somone help me calculate this limit.
And no, I can't use l'Hopitals rule so please don't mention it in this thread.
$$ \lim_{x \rightarrow \infty} \left( \sqrt{x+1} - \sqrt{x} \right) $$
The attempt
## \left( \sqrt{x+1} - \sqrt{x} \right) = \frac{\left( \sqrt{x+1} - \sqrt{x} \right)\left( \sqrt{x+1} + \sqrt{x} \right) }{\left( \sqrt{x+1} + \sqrt{x} \right) } = \frac{x+1 - x }{\left( \sqrt{x+1} + \sqrt{x} \right) } = \frac{1 }{x \left( \sqrt{\frac{1}{x}+\frac{1}{x^2}} + \sqrt{\frac{1}{x}} \right) } = \frac{1}{x} \frac{1 }{ \sqrt{\frac{1}{x}+\frac{1}{x^2}} + \sqrt{\frac{1}{x}} } \\ \rightarrow 0 \cdot \frac{1}{0 + 0} ## for ## x \rightarrow \infty ## division with 0 is undefined. Can somone help me calculate this limit.
And no, I can't use l'Hopitals rule so please don't mention it in this thread.